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Abstract. We study large scale behaviour of a population consisting of two types which evolve
in dimension d = 1, 2 according to a spatial Lambda-Fleming-Viot model subject to random
time-independent selection. If one of the two types is rare compared to the other, we prove that
its evolution can be approximated by a superBrownian motion in a random time-independent
environment. Without the sparsity assumption, a diffusion approximation leads to a Fisher-KPP
equation in a random potential. We discuss the longtime behaviour of the limiting processes ad-
dressing Wright’s claim that the variation in spatial conditions contributes positively to genetic
variety in the populations.

The crucial technical components of the proofs are two-scale Schauder estimates for semidis-
crete approximations of the Laplacian and of the Anderson Hamiltonian.
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Introduction

A fundamental challenge in population genetics is to understand the interplay between different
evolutionary and ecological factors and their overall contribution to genetic variety, i.e. the
distribution of different types within a population. A prominent example of such a force is a
random neutral process of ‘genetic drift’, which occurs due to random reproduction of organisms.
Another one is the adaptive process of selection. Both genetic drift and selection work, in
different ways, to reduce the genetic variability of populations. However, other ecological and
evolutionary forces may counterbalance those factors and explain durable heterogeneity within
the populations.

Starting with the pioneering works by Wright [54], spatial structure has played a key role in
understanding genetic diversity. Since individuals inhabit different, possibly distant geographical
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regions and do not move too far from their place of birth, the likelihood of mating between
geographically distant populations is very small. This leads to a greater differentiation between
subpopulations, as distant individuals evolve essentially independently of each other. In extreme
cases, this mechanism, which is usually referred to as isolation by distance may even lead to
creation of different species. Even though, in principle, selection acts to reduce the genetic
variety, Wright argued in the same article that if the selection is spatially heterogeneous, that
is, if selection favors different types of individuals in different regions in space, it may further
enhance the differentiation coming from isolation by distance. A large body of empirical evidence
suggests that this may indeed be the case. Studies on plants [43], bacteria [46], animals [34] seem
to all confirm that the spatial environmental inhomogeneity enhance the diversity. For more in-
depth description of biological literature, including less favorable viewpoints of the phenomena
we are concerned with, we refer to [50], [30], [49].

Our work is similarly motivated by the question: does spatially heterogeneous selection en-
hance the genetic diversity?

There are many approaches one could take to model a spatially structured population. The
stepping stone models (see i.e. [35]), where the population evolves in separated islands dis-
tributed on a lattice and interacts only with neighboring islands, lead to an artificial subdivision
of population. Approaches based around Wright–Malécot formula [4, 38, 54] (which was intro-
duced to study the isolation by distance phenomena) suffer from either inconsistencies in their
assumptions or lead to unnatural ‘clumping’ of the population. We refer to [6] for an overview
of difficulties associated with modelling spatially distributed populations. The spatial Lambda-
Fleming-Viot (SLFV) class of models, introduced in [21] and formally constructed in [5], has
been proposed specifically to overcome those difficulties, and is at the basis of our work. Here
the population in distributed over continuous space, whereas the reproductive events involve
macroscopic regions of space (in this work balls of a fixed radius ε ∈ (0, 1)) and are driven by a
space-time Poisson point process.

In the neutral SLFV there is no bias in the relative fitness of the populations at hand. Our
work considers instead the case in which the population consists of just two types (a and A)
and their relative fitness is modelled by a sign changing selection coefficient sε(x), x ∈ Td (the
latter being the d-dimensional torus), so that a is favored in the location x if sε(x) > 0 and A
is favored in the opposite case. Instead of choosing a specific selection coefficient, we sample it
from a probability distribution P. We will consider the proportion Xε(ω, t, x) , evaluated at time
t ≥ 0 and position x ∈ Td, of particles of type a with respect to the total population, given the
realization sε(ω) of the selection coefficient. The parameter ε > 0 indicates the size of the impact
area of reproductive events: we are interested in the limit ε→ 0 and will scale the magnitude of
the reproductive events and the strength of the selection coefficient sε according to ε as well. All
our scaling limits are diffusive and the effect of selection is weak with respect to neutral events.

We study two different scenarios. In the first one, we assume that type a is rare compared to
A. The rarity is described by considering an initial condition Xε(ω, 0, x) of order ε% for certain
values of % > 0. In this scenario a represents a mutation which tries to establish itself among
the wild type A. Just as a small sub-population in the Wright-Fisher model is described by a
branching process, we expect the limit to be a superBrownian motion (see [20] for an introduction
to superprocesses) in a random time-independent environment. A similar scaling result without
selection was first obtained by [12] (see also [17] for an analogous result regarding the voter
model) and recently extended in [16] to critical values of the parameter %. A scaling limit for a
model with a selection coefficient which is white in time and correlated in space, was obtained
by [13] using a lookdown representation.

We will assume, instead, that sε scales to a spatial white noise ξ on the torus Td and consider
only dimension d = 1, 2. In this setting, the limit (cf. Theorem 1.8) is the rough superBrown-
ian motion introduced in [45], which formally solves the following stochastic partial differential
equation (SPDE) for some ν0 > 0 (in d = 2 the SPDE has to be replaced by the associated
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martingale problem):

(1) ∂tY = ν0∆Y + (ξ −∞1{d=2})Y +
√
Y ξ̃, Y (0) = Y0.

Here ξ̃ is a space-time white noise independent of ξ. The∞ appearing in d = 2 is the consequence
of the renormalization required to make sense of the Anderson model, which is described by the
SPDE

(2) ∂tY = ν0∆Y + (ξ −∞1{d=2})Y, Y (0) = Y0.

The latter equation is singular in d = 2 because the expected regularity of the solution Y is not
sufficient to make sense of the product ξ ·Y and requires theories such as regularity structures or
paracontrolled distributions (cf. Section 6 or see [29, 28] for complete works on singular SPDEs).
In particular, there is no understanding of the Anderson model in dimension d ≥ 4. We restrict
to d ≤ 2 as these are the biologically interesting cases and in d = 3 renormalization is more
involved. The quoted solution theories for singular SPDEs work pathwhise, conditional on the
realization of the noise ξ and some functionals thereof. As a consequence, solutions to (1) are
defined as martingale solutions conditional on the realization of ξ and uniqueness in distribution
of solutions to (1) is then proven through a conditional duality argument. This is in contrast
with cases where the environment is white in time [41], where the martingale term can contain
also the environment.

A crucial step in the proof of the scaling limit is to show that the continuous Anderson
Hamiltonian H = ν0∆ + ξ −∞1{d=2} is the limit of approximations Hε = Aε + ξε − cε1{d=2}
(cf. Theorem 1.23). In the latter operator, the approximate Laplacian Aε acts on L2(Td)
and is expressed in terms of local averages of functions: we call this setting semidiscrete, as
opposed to the fully discrete setting, where the underlying space is for example a lattice. Fully
discrete approximations of singular SPDEs have been the object of many studies (see [40, 19,
14, 39] for a partial literature). Instead, approximations in the present semidiscrete case appear
new. In the study of such SPDEs the smoothing effect of the Laplacian is crucial: the first
step towards understanding the convergence of the operators is to establish the regularization
properties of the approximate Laplacian Aε, commonly known as Schauder estimates. Through
a two-scale argument, we separate macroscopic scales in frequency space, at which Aε regularizes
analogously to the Laplacian, and microscopic scales, which are small but see no regularization
(see Theorem 1.21). Once we are provided with the Schauder estimates and the convergence of
Hε, the scaling limit is proven through an application of the Krein-Rutman theorem. At this
point it is particularly important that the space is compact, while all other results in this work
seem to extend from Td to Rd.

In the second scenario, sε is chosen to scale to a smooth random function ξ, and we do not
take the sparsity assumption. This regime corresponds studying the long time behaviour of a
large population. In this case under diffusive scaling one obtains (cf. Theorem 1.16) convergence
to a solution of the (in d = 1 stochastic) Fisher-KPP equation

(3) ∂tX = ν0∆X + ξX(1−X) +
√
X(1−X)ξ̃1{d=1}, X(0) = X0.

As before ξ̃ is a space-time white noise independent of ξ. In a nutshell, the intensity of the
martingale term is governed by a parameter η ≥ 0 and there exists a critical value ηc(d) ≥ 0
such that the martingale term is of order εη−ηc . In dimension d = 1 we consider η = ηc, while
in dimension d = 2 we take η > ηc. In some models, by taking into account dual processes, cf.
[21, 24] , one can prove that in d = 2 the deterministic limit holds also at the critical value. To
the best of our knowledge the process we consider does not have a dual: hence although a similar
result is expected, it remains open as the quoted methods do not apply. Due to the same lack
of duality, in d = 1 uniqueness of the solutions seems out of reach. Similar results have been
obtained in [22] where the selection coefficient is constant in space and time (in this case the
process admits a dual) and in [7], where the selection coefficient is fluctuating in time and space
and correlated in the latter, giving rise to an additional martingale term.
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The treatment of this second regime is apparently much simpler, as the solution is bounded
between 0 and 1. The only difficulty is to prove convergence in a topology, in which one can pass
to the limit inside the nonlinearity. Unlike the previous works [22, 7] we can make good use of
the Schauder estimates and directly prove tightness for a smoothed version of Xε in a Sobolev
space of positive regularity (see Theorem 1.16).

Eventually, we study the longtime behavior of the limiting processes. As already observed
in [45], the time-independent random environment is beneficial for the survival of the rough
superBrownian motion, which then depends just on the positivity of the largest eigenvalue of
the Anderson Hamiltonian H. We will show that with positive probability, with respect to the
environment, the process will survive (cf. Proposition 1.11). As a comparison, observe that if the
environment is fluctuating also in time, the process can die out quite dramatically, for example
see [42]. As for the second setting, in d = 1 the presence of genetic drift implies that the solution
to (3) becomes trivial in finite time. If d = 2, if the initial condition is not identically 1 or
0, and if the noise is sufficiently strong (see Assumption 1.18 and Remark 1.19), the solution
converges to a unique non-trivial X(ω), which amounts to longtime coexistence of both types
(cf. Proposition 1.20).

In conclusion, this work extends previous scaling limits to incorporate a sign changing, possibly
rough, selection. Choosing the selection at random provides a natural setting which exhibits
interesting longtime behavior. We believe this could be the starting point for some ulterior
studies: for example Equation (3) in d = 1 with x ∈ R (so globally in space) can be recovered
with the same methods and could have interesting longtime properties, as the selection could
balance out the genetic drift. The methods we used are based on two-scale Schauder estimates
and do not rely on duality. They allow us to establish a connection to singular SPDEs, but
appear to be a fairly simple, powerful tool to treat nonlinearities appearing in the SLFV.

Structure of the paper. In Section 1, we describe the notations, define the models and state
main results. Section 2 is devoted to relation between the Spatial Lambda-Fleming-Viot process
with selection in rough potential and the rough superBrownian motion, whereas in Section 3 the
similar relationship with Fisher-KPP equation in rough potential is established. The long time
behaviour of the limiting processes is discussed in Section 4. The rest of the paper is devoted
to analytical backbone of our results. Section 5 covers Schauder estimates. Finally, Section 6
discusses the analytical and probabilistic aspects of the Anderson model.

Acknowledgements. We would like to thank Nicolas Perkowski for many helpful discussions
and comments, and Guglielmo Feltrin for an enlightening conversation.

1. Models and statement of main results

We begin with stating the notation used throughout the paper in Subsection 1.1. In Sub-
section 1.2 we describe the Spatial-Lambda-Fleming-Viot. In Subsection 1.3 describe the small
families limit which is the first of our main results. Subsection 1.4 is devoted to diffusive scal-
ing which leads to Fisher-KPP equation. In Subsection 1.5 we describe the main analytical
components of the proofs, which we believe may be of separate, purely mathematical interest.

1.1. Notations. We write N = {0, 1, 2, . . .}, and R+ = [0,∞). Fix d ∈ N. The d−dimensional
Td torus is defined as Td := [−1/2, 1/2]d /∼ , where ∼ is the equivalence relation which glues
opposite edges. For notational convenience we use the following convention.

We write ε ∈ (0, 1/2) for ε = 1/n, for some n ∈ N, n ≥ 2.

Then we introduce the following scaling for balls and cubes. Indicate with |A| the Lebesgue
measure of a Borel set A ⊆ Td. Let then Bε(x) ⊆ Td be the ball (w.r.t. the Euclidian norm) of
volume εd about x. Similarly, let Qε(x) ⊂ Td be the d-dimensional cube

y ∈ Qε(x) ⇐⇒ (y−x)i ∈
[
− ε/2, ε/2

)
, ∀i ∈ {1, . . . , d}.
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In particular, in our notation
|Bε(x)| = |Qε(x)| = εd.

Now, for integrable w : Td → R define Πεw(x) as an average integral of w over Bε(x), that is

Πεw(x) := −
∫
Bε(x)

w(y) dy :=
1

|Bε(x)|

∫
Bε(x)

w(y) dy.

Furthermore, consider the lattice
Zdε =

(
ε−1Zd

)
∩ Td.

Since ε = 1/n, cubes Qε, centred at the points of lattice Zdε are disjoint and satisfy

Td =
⋃
x∈Zε

Qε(x).

We make use of the Fourier transform both on the torus and in the full space. For ϕ ∈ S ′(Td),
that is for an element of the space of tempered distributions on Td, we define

ϕ̂(k) = FTdϕ(k) =

∫
Td
e−2πιk·xf(x) dx, k ∈ Zd.

Analogously, for ψ ∈ S ′(Rd)

FRdψ(k) =

∫
Rd
e−2πιk·xψ(x) dx, k ∈ Rd.

These Fourier transforms admit inverses, which we denote with F−1
Td ,F

−1
Rd respectively.

For a : Zd → R with at most polynomial growth we define the Fourier multiplier as an operator
of the form

a(D)ϕ := F−1
Td
(
a(·)FTdϕ(·)

)
, ∀ϕ ∈ S ′(Td).

Since characteristic functions, normalized to integrate to 1 over the entire domain, enter the
calculations repeatedly, for a set A we write:

χA(x) =
1

|A|
1A(x).

In the special case of balls and cubes we additionally define

χε(x) := ε−d1Bε(0)(x), χ̂ε(k) = χ̂(εk) := FTdχε(k) = FRdχε(k),

χQε(x) := ε−d1Qε(0)(x), χ̂Qε(k) = χ̂Q(εk) := FTdχQε(k) = FRdχQε(k).

Observe that in order to obtain the identity between the Fourier transform on the torus and in
the full space, the ε should satisfy ε ≤ 1/2 <

√
π/2, as otherwise the ball of radius ε about 0

intersects the boundary of the torus.
A special role in the paper is played by an operator Aε defined as

(4) Aε(ϕ)(x) = ε−2 −
∫
Bε(x)

−
∫
Bε(y)

ϕ(y)−ϕ(x) dz dy = ε−2
(
Π2
εϕ−ϕ

)
(x).

Such an operator is a Fourier multiplier with

Aε = ϑε(D), ϑε(k) = ε−2 1

χ̂2(εk)− 1
.

We proceed with a definition of Besov spaces. Following [3, Proposition 2.10], fix a dyadic
partition of the unity {%j}j≥−1. We assume that j ≥ 0, %j(·) = %(2−j ·) is a radial, smooth
compactly supported function. For a distribution ϕ ∈ S ′(Td) define ∆jϕ = %j(D)ϕ and hence
define the spaces Bα

p,q for α ∈ T, p, q ∈ [1,∞] via the norms

‖ϕ‖Bαp,q = ‖(2αj‖∆jϕ‖Lp(Td))j≥−1‖`q(j≥−1).
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Since the partition of unity was chosen to be smooth, we define the Besov spaces on full space
via the same formula. It is convenient to introduce notation

Kx
j (y) = FTdρj(x− y).

For α ∈ R+ \ N0 and p, q = ∞ the above definition coincides with that of classical Hölder
spaces. We therefore write

Cα := Bα
∞,∞, Cαp := Bα

p,∞.

We shall denote the norm of the Hölder space Cα by ‖ · ‖α.
Let M(Td) denote the space of finite positive measures over Td. For metric spaces X,Y

let C(X;Y ) and Cb(X;Y ) the space of continuous, and bounded and continuous, respectively
functions from X to Y . If Y = R, we may drop the second argument. In addition for a metric
space X we define D([0,∞);X) to be the space of cadlag functions with values in X, endowed
with the Skorohod topology as in [23, Section 3.5] (similarly for finite time horizon T > 0 we
write D([0, T ];X)). If X is a Banach space we write L2([0, T ];X) for the space of measurable
functions ϕ on [0, T ] taking values in X and satisfying ‖ϕ‖L2([0,T ];X) =

(
∫T0 ‖ϕ(s)‖2X ds

)1/2
<∞.

The local variant of the space for T =∞ is then defined as L2
loc([0,∞);X) =

⋂
T>0 L

2([0, T ];X).

1.2. Spatial Λ-Fleming-Viot process in a random environment. We now turn our atten-
tion to the description of the underlying popuation model, the Spatial Lambda-Fleming-Viot
model in a random environment. We are interested in a population with two genetic types, a
and A. At each time t ≥ 0, Xε

t is a random function such that

Xε
t = proportion of individuals of type a at time t at position x.

The dynamics of the Spatial Lambda-Fleming-Viot model is determined by reproduction
events, driven by independent Poisson point processes. In order to incorporate selection, we
follow the usual strategy and distinguish two types of reproduction events, neutral and selective.
In simple terms

Neutral: Both types have the same chance of reproducing,
Selective: One of the two types is more likely to reproduce than the other.

The strength, as well as the direction of the selection are encoded by the magnitude and sign of
the random function sε(ω). The function sε should satisfy

(5) Ω 3 ω 7→ sε(ω) ∈ L∞(Td;R), |sε(ω, x)| < 1, with (Ω,F ,P) a probability space.

Conditional on the realization sε(ω) of the environment, the process Xε(ω) will be a Markov
process. Its dynamics are defined below, deferring some technical steps regarding existence and
construction of the probability space (Ω × Ω′,F ⊗ F ′,P n Pω) on which the process is defined
until Appendix A. We write:

M =
{
w : Td → [0, 1], w measurable

}
.

Definition 1.1 (Spatial Λ-Fleming-Viot process with random selection). Fix ε ∈ (0, 1
2), u ∈ (0, 1)

and consider sε and Ω as in (5). Let Xε,0 : Td → R be such that 0 ≤ Xε,0 ≤ 1. Define the process
Xε on the probability space (Ω× Ω′,F ⊗ F ′,P n Pω) , so that for every ω ∈ Ω it holds that

i) The space (Ω′,Pω) supports a pair of independent Poisson point processes Πneu
ω and Πsel

ω

on R+×Td with intensity measures dt⊗(1−|sε(ω, x)|)dx and dt⊗|sε(ω, x)|dx respectively.
ii) The random process (defined on Ω′) R+ 3 t 7→ Xε

t (ω) is the Markov process started in
Xε,0 with values in M associated to the bounded generator

L(ε, sε(ω), u) : Cb(M ;R)→ Cb(M ;R)

(see again Lemma A.2 for a rigorous construction), that can be described by the following
dynamics.
(1) If (t, x) ∈ Πneu

ω , a neutral event occurs at time t in the ball Bε(x), namely:
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(a) Choose a parental location y uniformly in Bε(x).
(b) Choose the parental type p ∈ {a,A} according to the distribution

P [p = a] = Xε
t−(ω, y), P [p = A] = 1−Xε

t−(ω, y).

(c) A proportion u of the population within Bε(x) dies and is replaced by offspring
with type p. Therefore, for each point z ∈ B(x, r),

Xε
t (ω, z) = Xε

t−(ω, z)(1− u) + uχ{p=a}.

(2) If (t, x) ∈ Πsel
ω , a selective event occurs in the ball Bε(x), namely:

(a) Choose two parental locations y0, y1 independently, uniformly in Bε(x).
(b) Choose the two parental types, p0, p1, independently, according to

P [pi = a] = Xε
t−(ω, yi), P [pi = A] = 1−Xε

t−(ω, yi).

(c) A proportion u of the population within Bε(x) dies and is replaced by offspring
with type chosen as follows:
(i) If s(x) > 0, their type is set to be a if p0 = p1 = a, and A otherwise.

Thus for each z ∈ Bε(x)

Xε
t (ω, x) = (1− u)Xε

t−(ω, z) + uχ{p0=p1=a}.

(ii) If s(x) < 0, their type is set to be a if p0 = p1 = a or p0 6= p1 and A
otherwise, so that for each z ∈ Bε(x),

Xε
t (ω, z) = (1− u)Xε

t−(ω, z) + u(χ{p0=p1=a} + χ{p0 6=p1}).

Remark 1.2. Strictly speaking, the process constructed in Appendix A is a Markov jump process
Xε(ω). The Poisson point processes mentioned in Definition 1.1 are not constructed explicitly,
but can be reconstructed from the jump times and jump locations.

Most of our arguments take advantage of the martingale representation of the process. We
record this representation as a Lemma. The proof can be found in Appendix A. For a function
f on [0,∞) we write

ft,s = ft − fs.

Lemma 1.3. Fix ω ∈ Ω and Xε an SLFV as in the previous definition. For every ϕ ∈ L1(Td)
the process t 7→ 〈Xε

t (ω), ϕ〉 satisfies the following martingale problem, for every t ≥ s ≥ 0

〈Xε
t,s(ω), ϕ〉 = uεd

∫ t

s
〈
(
Π2
ε−Id

)
(Xε

r (ω)), ϕ〉+〈Πε

[
sε(ω)

(
ΠεX

ε
r (ω)−(ΠεX

ε
r (ω))2

)]
, ϕ〉dr+M ε

t,s(ϕ)

where M ε
t,s(ϕ) is the increment of a square-integrable martingale with predictable quadratic vari-

ation given by

〈M ε(ϕ)〉t = u2ε2d

∫ t

0
〈(1+sε(ω))ΠεX

ε
r (ω), (Πεϕ)2−2(Πεϕ)

(
Πε(X

ε
r (ω)ϕ)

)
〉

+ 〈
(
Πε(X

ε
r (ω)ϕ)

)2
, 1〉−〈sε(ω)(ΠεX

ε
r (ω))2, (Πεϕ)2−2(Πεϕ)

(
Πε(X

ε
r (ω)ϕ)

)
〉 dr.

1.3. Sparse regime. First, we consider a scaling regime in which the type a is rare, which means
that Xε

t is very close to 0. Heuristically, if ερ is the magnitude of the local population density,
then Yt = ε−ρXε

t models the density of the number of individuals of type a. This justifies the
following ‘smallness’ assumption on the sequence of initial conditions of the process.

Assumption 1.4 (Sparsity). Fix a % > 5d/2 and a sequence Xε,0 ∈ L∞(Td) such that for some
Y 0 ∈ L∞(Td)

0 ≤ Xε,0 ≤ 1, lim
ε→0

ε−%Xε,0 = Y 0 in L∞(Td).
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We would like to describe a scaling limit in which even though none of the types is overall
favourable, the selection can be locally strong. In particular, our selection coefficient will con-
verge to space white noise. However, to obtain a non-trivial scaling limit in dimension d = 2,
renormalization has to be taken into account. The sequence of renormalization constants cε is
determined by the sequence which allows constructing solutions to the Anderson model, namely

(6) cε =
∑
k∈Z2

χ̂2(εk)χ̂Q(εk)

−ϑε(k) + 1
.

The assumptions on the noise are summarized in what follows. We emphasize that ξε is an
approximation of space white noise.

Assumption 1.5 (White noise scaling). Consider a probability space (Ω,F ,P) on which is de-
fined an i.i.d. sequence of random variables {Zε(x)}x∈Zdε with all moments finite and satisfying:

E
[
Z2
ε (x)

]
= 1, Zε(ω, x) ∈ (−2, 2), for all x ∈ Zdε , ε ∈ (0, 1/2), ω ∈ Ω.

Then define

sε(ω, y) = Zε(ω, x)− ε
d
2 cε1{d=2}, if y ∈ Qε(x), ∀ω ∈ Ω, x ∈ Td

and write:
ξeε(ω, x) = ε−

d
2 sε(ω, x), ξε(ω, x) = ξeε(ω, x) + cε1{d=2}.

Under appropriate scaling, we will prove that the process Xε converges to a rough super-
Brownian motion. This process has been introduced and studied by [45] as an approximation of
lattice branching process in a static environment. First, recall the construction of the Anderson
Hamiltonian, and its relationship to our setting.

Lemma 1.6. Let (Ω,F ,P) be a probability space supporting a white noise ξ : Ω→ S ′(Td), that is
a process such that for all f ∈ S(Td) the projection 〈ξ, f〉 =: ∫Td f(x)ξ( dx) are Gaussian random
variables with covariance

E
[
〈ξ, f〉〈ξ, g〉

]
= 〈f, g〉, ∀f, g ∈ S(Td).

For almost all ω ∈ Ω there exists an operator

H(ω) : Dω ⊆ C(Td)→ C(Td),

with a dense domain Dω ⊆ C(Td), such that

H(ω) = lim
ε→0

[
Aε + ξε(ω)− cε1{d=2}

]
=: ν0∆ + ξ(ω)−∞1{d=2}.

The limit is taken in distribution with respect to the probability measure P, with the precise
meaning of the procedure provided in Theorem 1.23. The last notation is just a convenient
formalism obtained by exchanging the limit with the sum.

This lemma is a consequence of Proposition 1.22 and Theorem 1.23 below. The rough super-
Brownian motion is then a Markov process conditional on the realization of the spatial white
noise and thus on the realization of the Anderson Hamiltonian.

Definition 1.7. Let (Ω,F ,P) be a probability space supporting a white noise ξ and Y 0 ∈M(Td).
A rough superBrownian motion is a couple composed of an enlarged probability space (Ω×Ω,F ⊗
F ,P n Pω) (where F ⊗ F is the product sigma-field and Pω is the conditional law of the process
given the realization of the noise, see Appendix A for a definition of semidirect products) and a
map

Y : Ω× Ω→ C([0,∞);M(Td)).
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Moreover, for ω ∈ Ω let {Fωt }t≥0 be the filtration generated by t 7→ Yt(ω), right-continuous and
enlarged with all null-sets. Then, for all ω ∈ Ω such that the operator H(ω) is defined, and for
all ϕ ∈ Dω and T > 0, the process

Mϕ
t := 〈Yt(ω), ϕ〉 − 〈Y 0, ϕ〉 −

∫ t

0
〈Ys(ω),H(ω)ϕ〉ds

is a centered continuous, square-integrable Fωt -martingale on [0, T ] with quadratic variation

〈Mϕ〉t =

∫ t

0
〈Ys(ω), ϕ2〉 ds.

We are now in position to state the first of the main results.

Theorem 1.8. For any % > 5
2d consider a random environment sε as in Assumption 1.5, and

initial conditions Xε,0 as in Assumption 1.4. Consider the process Xε as in Definition 1.1,
associated to the generator

ε−d−2−ηL(ε, ε2− d
2 sε(ω), εη),

with η defined by

η := %+ 2− d.(7)

Then the process t 7→ Y ε
t = ε−%Xε

t converges in distribution, as a stochastic process on the
probability space (Ω× Ω′,F ⊗ F ′,P n Pω) (cf. Definition 1.1):

lim
ε→0

Y ε = Y in D([0,∞);M(Td)),

where Y is the unique in distribution rough superBrownian motion as in Definition 1.7, started
in Y 0.

Remark 1.9. The scaling in Theorem 1.8 corresponds to scaling down the impact of each of
the events by εη, the rate of selective events by ε2−d/2, setting the volume of the ball in which of
each of the events occurs to ε and speeding up the time by ε−2−d−η. A fraction of order ερ of the
individuals present initially in the population is of type a.

The coefficients appearing in the rescaling could be interpreted as follows. The term ε−d−2−η

guarantees diffusive scaling, namely that a Laplacian appears in the limit. The scaling of sε
guarantees convergence to space white noise. Finally, the parameter η guarantees that the limit
is non-trivial. limit; it’s only impact is determination of the only first non-trivial term in the
quadratic variation.

An interesting feature of the rough superBrownian motion on a torus is persistence.

Definition 1.10. A random process t 7→ Y (t) defined on a probability space (Ω,F ,Q) is persis-
tent if for any ϕ ∈ S(Td) and ε > 0

Q
(

lim
t→∞
〈Y (t), ϕ〉 > ε

)
> 0.

Proposition 1.11. Let Y (t) be a rough superBrownian motion in a static environment as in
Definition 1.7. Then:

P
(
The process t 7→ Yt(ω) is persistent w.r.t. the law Pω

)
> 0.

The proof of Proposition 1.11 can be found in Subsection 4.1.

1.4. Diffusive regime. The second scaling regime we consider is the diffusive one. As before,
the impact parameter u is scaled as ε−η. The restrictions on the value of η follows

Assumption 1.12. Choose η such that

η = 1 if d = 1, η > 0 if d = 2.

In the diffusive regime we still assume that the selection coefficient is random, yet it is not
described by a an object converging to space white noise.
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Assumption 1.13. Consider a probability space (Ω,F ,P) and let ξ be a measurable map:

ξ : Ω→ S(Td).
Then define:

sε(ω, x) = ε2ξ̄(ω, x).

Then we define the (stochastic if d = 1) FKPP equation in a random potential as follows.

Definition 1.14. Let (Ω,F ,P) be a probability space supporting a white noise ξ and X0 ∈ Bα
2,2.

A (stochastic if d = 1) FKPP process in random potential is a couple given by a probability space
(Ω× Ω,F ⊗ F ,P n Pω) (cf. Definition 1.7) and a map

X : Ω× Ω→ L2
loc([0,∞);Bα

2,2),

for some α > 0. Moreover, for ω ∈ Ω let {Fωt }t≥0 be the filtration generated by t 7→ Xt(ω),
right-continuous and enlarged with all null-sets. Then for all ω ∈ Ω it is required that, depending
on the dimension:

(1) In dimension d = 1 for all ϕ ∈ C∞(Td):

Nϕ
t := 〈Xt(ω), ϕ〉 − 〈X0, ϕ〉 −

∫ t

0
〈Xs(ω), ν0∆ϕ〉 − 〈ξ(ω)Xs(ω)(1−Xs(ω)), ϕ〉ds

is a continuous in time, square integrable martingale with quadratic variation

〈Nϕ〉t =

∫ t

0
〈Xs(ω)(1−Xs(ω)), ϕ2〉ds.

(2) In dimension d = 2, X is a solution to

∂tXt(ω) = ν0∆Xt(ω) + ξ(ω)Xt(ω)(1−Xt(ω)),

X0(ω, x) = X0(ω, x), ∀x ∈ Td.

It is interpreted in the sense that for all ϕ ∈ C∞(T2)

〈Xt(ω), ϕ〉 = 〈X0, ϕ〉+

∫ t

0
〈Xs(ω), ν0∆ϕ〉+ 〈ξ(ω)Xs(ω)(1−Xs(ω)), ϕ〉 ds.

Remark 1.15. Note that in the previous definition, since X ∈ L2
loc([0,∞);Bα

2,2), the quadratic
non-linearity: ∫ t

0
〈X2

s , ϕ〉ds

is well-defined. Moreover, up to enlarging the probability space, the process can be represented in
d = 1 as a solution to an SPDE of the form

∂tX = ν0∆X + ξX(1−X) +
√
X(1−X)ξ̃,

where the spatial noise ξ is independent of the space-time white noise ξ̃, following a classical
construction by Konno and Shiga [36] (see also [45, Theorem 2.18] for a similar case in a random
environment).

In this setting, we can prove the following scaling limit.

Theorem 1.16. Let η satisfy Assumption 1.12 and sε be as in Assumption 1.13. Consider
X0 ∈ S(Td), and let Xε(ω) be the Markov process associated to the generator

ε−η−d−2.L(ε, sε(ω), εη)

and started in X0, as Definition 1.1. There exists an α > 0 such that for every ω ∈ Ω

{t 7→ Xε
t (ω)}ε∈(0,1/2)

is tight in the space L2
loc([0,∞);Bα

2,2). In particular:
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(1) In dimension d = 1 if η = 1 any subsequential limit is a stochastic FKPP process in a
random potential as in Definition 1.14.

(2) In dimension d = 2 the entire sequence converges in distribution to an FKPP process in
a random potential as in Definition 1.14.

Remark 1.17. The scaling in Theorem 1.16 is very similar to that of Theorem 1.8. Once again
the impact of each of the events is scaled by εη (with a different value of η), the rate of selective
events by ε2, the volume of the ball in which of each of the events occurs is set to ε time is sped
up by ε−2−d−η. We do not place any restrictions on the relative sizes of the initial population.

As before, we can now study the longtime behavior of the limiting process. In dimension d = 1
the presence of the genetic drift implies triviality in finite time. In dimension d = 2 we have,
conditional on the realisation of the noise, a deterministic equation. In order to prove longtime
coexistence of the two types we require that the noise is sufficiently strong

Assumption 1.18. Fix (Ω,F ,P) as in Definition 1.14. Let λ1(∆− ξ), λ1(∆ + ξ) be the largest
eigenvalues of the operators ∆ + ξ and ∆− ξ respectively. Then assume that:

P(λ1(∆ + ξ) > 0, λ1(∆− ξ) > 0) > 0.

These assumptions are not too far-fetched we two cases in which they are naturally satisfied.

Remark 1.19. If the noise is symmetric and sufficiently “strong” , Assumption 1.18 hold.
(1) Consider for example d = 2 and ξε = ε−d%(ε−d·) ∗ ξ, where ξ is space white noise on Td,

% is a smooth symmetric positive function with compact support and ∫Td %(x) dx = 1 and
ε ∈ (0, 1). Then there exists an ε0 > 0 such that for ε > ε0

P(λ1(∆ + ξε) > 0) >
1

2
,

which by symmetry implies

P(λ1(∆ + ξε), λ1(∆− ξε) > 0) > 0.

In fact in [2], for the construction of the continuous Anderson Hamiltonian H in d = 2,
the authors prove that there exists a deterministic sequence cε ' log 1

ε such that λ1(∆ +

ξ̄ε(ω))− cε → λ1(H(ω)) ∈ R for almost all ω ∈ Ω.
(2) Instead of taking a sufficiently close approximation of white noise, one can take a suf-

ficiently large domain. Consider % as above and ξ space white noise on Rd, ξ = % ∗ ξ.
Then instead of considering the Laplacian on the unit torus, consider ∆L the Laplacian
on L2(LTd), the latter being the torus of size L > 0 (i.e. [−L

2 ,
L
2 ]d with periodic boundary

conditions). Then there exists an L0 > 0 such that for all L ≥ L0

P(λ1(∆L + ξ) > 0) >
1

2
,

which as before implies the requirements. An indirect proof of this fact can be found in
[11, Theorem 5.1], see also [15] for a similar result with ξ being space white noise.

We can then prove the following result (here X ≡ c ∈ R means that X(x) = c,∀x ∈ Td).

Proposition 1.20. Consider X a process as in Definition 1.14.
(1) If d = 1, then P n Pω-almost surely there exists a finite random time τ , such that

Xτ ≡ 1, or Xτ ≡ 0.

(2) If d = 2 and Assumption 1.18 is satisfied, and if X0 6≡ 1, X0 6≡ 0, for every ω ∈ Ω there
exists an X ∈ Bα

2,2, for some α > 0, with 0 ≤ X ≤ 1, such that

X(ω) = lim
t→∞

Xt(ω) in Bα
2,2,

and
P(X 6≡ 1, X 6≡ 0) ≥ P(λ1(∆ + ξ) > 0, λ1(∆− ξ) > 0) > 0.
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The proof of this proposition can be found at the end of Section 4, in Lemmata 4.2 and 4.3.

1.5. Proof methods. The main ingredient of the proofs is a careful study of the operator Aε.
Intuitively, one expects that this operator approximates the Laplacian with periodic boundary
conditions and therefore has similar regularizing properties. To quantify this intuition we in-
troduce a division of scales. On large scales, namely for Fourier modes k of order k . 1/ε we
show that Aε has the regularizing properties of the Laplace operator. On small scales, that is
for modes of order k & 1/ε we do not expect any regularization. Instead we prove that small
scales are negligible. To divide small and large scales we use ‘projection’ operators Pε and Qε
on large and small scales respectively. Here we state a slimmed version of the results we require.
The proof of the following theorem, as well as additional side results, is the content of Section 5.

Theorem 1.21. There exists a smooth radial function with compact support k : Rd → R such
that for some 0 < r < R

k(k) = 1, ∀|k| ≤ r, k(k) = 0, ∀|k| ≥ R.
Define

Pε = k(εD), Qε = (1− k)(εD).

For any α ∈ R, p ∈ [1,∞] the following holds"
i) For any ζ > 0 and ϕ ∈ Cαp

Aεϕ→ ν0∆ϕ in Cα−2−ζ
p , as ε→ 0,

where

(8) ν0 =
1

12
for d = 1, ν0 =

1

4π
for d = 2.

ii) Uniformly over λ > 1, ε ∈ (0, 1/2) and ϕ ∈ Cαp the following estimates hold:

‖Pε(−Aε + λ)−1ϕ‖Cα+2
p

+ ε−2‖Qε(−Aε + λ)−1ϕ‖Cαp . ‖ϕ‖Cαp .

In particular, a precise control of the regularization effects of the semidiscrete Laplacian Aε
allows us to treat semidiscrete approximations of the Anderson model that appear in the study
of the rough superBrownian motion. In the next proposition we recall some salient features of
the continuous Anderson Hamiltonian.

Proposition 1.22. Fix κ > 0 and ξε satisfying Assumption 1.5. Up to changing probability
space there exists a space white noise ξ : Ω→ S ′(Td) for which the following hold true for almost
all ω ∈ Ω. The Anderson Hamiltonian

H(ω) = ν0∆ + ξ(ω)−∞1{d=2}

associated to ξ(ω) is defined, as constructed1 in [25] in d = 1 and [2] in d = 2. The Hamilton-
ian, as an unbounded self-adjoint operator on L2(Td), has a discrete spectrum given by pairs of
eigenvalues and eigenfunctions {(λk(ω), ek(ω))}k∈N such that:

λ0(ω) > λ1(ω) ≥ λ2(ω) ≥ . . . , lim
k→∞

λk(ω) = −∞, e0(ω, x) > 0, ∀x ∈ Td.

In addition, for every k ∈ N, ek(ω) ∈ C2− d
2
−κ(Td), and the set

Dω = {Finite linear combination of {ek(ω)}k∈N}
is dense in C(Td).

The operator Aε is a tool which provides us with a semidiscrete approximation of the contin-
uous Anderson Hamiltonian.

1To be precise, [25] constructs the operator in dimension d = 1 with Dirichlet boundary conditions, but their
construction can be extended to periodic boundary conditions. Alternatively, the operator can be constructed
with arguments similar to the ones presented in Section 6.
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Theorem 1.23. Fix κ > 0 and ξε satisfying Assumption 1.5. Up to changing probability space
the assertions of Proposition 1.22 hold true. For every k ∈ N there exists an ε0(ω, k) ∈ (0, 1/2)
such that for every ε ≤ ε0(ω, k) there exists a pair of eigenvalue and associated eigenfunction
(λεk(ω), eεk(ω)) for the operator

Hε(ω) := Aε + (ξε(ω)− cε)Π2
ε, Hε(ω) : L2(Td)→ L2(Td),

with cε as in (6), such that

lim
ε→0

λεk(ω) = λk(ω), lim
ε→0

Πεe
ε
k(ω) = ek(ω) in C2− d

2
−κ(Td).

The proof of this result can be found in Section 6.

2. Scaling to the rough super-Brownian motion

This section is devoted to the proof of Theorem 1.8. We leverage the analytic results of
Theorem 1.23 to obtain tightness of the sequence Y ε. Uniqueness of the limit points the follows
by a conditional duality argument.

2.1. Scaling limit. The core of the tightness proof is conditioning on the realization of the
environment. Since we want to prove convergence in distribution for the sequence Y ε, the exact
choice of the probability space Ω of Definition 1.1 is not important. For this reason we adopt the
following standing assumption that allows us to work with a suitably chosen probability space.

Assumption 2.1. Let (Ω,F ,P), the probability space appearing in Definition 1.1 and Assump-
tion 1.5 be such that the results of Proposition 1.22 and Theorem 1.23 hold true for almost all
ω ∈ Ω.

The first step towards establishing tightness is to restate the martingale problem of Lemma 1.3
to take into account the scaling assumed in Theorem 1.8.

Lemma 2.2. In the setting of Theorem 1.8 and under Assumption 2.1, for every ω ∈ Ω and
ε ∈ (0, 1/2), under the law Pω, and for every ϕ ∈ L1(Td) the process t 7→ 〈Y ε

t (ω), ϕ〉 satisfies the
following martingale problem:

(9) 〈Y ε
t,s(ω), ϕ〉 −M ε

t,s(ϕ)

=

∫ t

s
〈Aε(Y ε

r (ω)) + Πε[ξε(ω)ΠεY
ε
r (ω)], ϕ〉−ε%〈

(
ΠεY

ε
r (ω)

)2
, ξε(ω)Πε(ϕ)〉dr,

where M ε
· (ϕ) is a square integrable martingale with predictable quadratic variation given by:

(10) 〈M ε(ϕ)〉t =

∫ t

0
〈(1+ε2− d

2 sε(ω))ΠεY
ε
r (ω), (Πεϕ)2−2ε%Πε(ϕ)Πε(Y

ε
r (ω)ϕ)〉

+ ε%〈
(
Πε(Y

ε
r (ω)ϕ)

)2
, 1〉 − ε%〈ε2− d

2 sε(ω)(ΠεY
ε
r (ω))2, (Πεϕ)2−2ε%Πε(ϕ)Πε(Y

ε
r (ω)ϕ)〉dr,

Remark 2.3. Note that the only term which is not of lower order in the quadratic variation is〈
ΠεY

ε
r ,
(
Πεϕ

)2〉
,

which, combined with the form of the drift term, provides an algebraic heuristic for obtaining the
super-Brownian motion in a static random environment as the scaling limit.

In order to obtain the convergence, the first step is to prove a tightness result.

Proposition 2.4. In the setting of Theorem 1.8 and under Assumption 2.1 fix any ω ∈ Ω. For
any T > 0 the sequence {Y ε(ω)}ε∈(0,1/2) is tight in D([0, T ];M(Td)). Moreover any limit point
is continuous, i.e. lies in C([0, T ];M(Td)).

The proof will be based on an application of Jakubowski’s tightness criterion, which we recall
for convenience.
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Proposition 2.5. [32, Theorem 3.1] Let X be a separable metric space. Let F be a family of
real, continuous functions on X which separates points and is closed under addition. Then a
sequence of probability measures {Pn}n∈N on D([0, T ];X) is tight if the following two conditions
are satisfied:

(1) For each ε > 0 there exists a compact set K ⊂ X such that

inf
n∈N

Pn
(
Xt ∈ K, ∀t ∈ [0, T ]

)
≥ 1− ε,

where Xt is the canonical process on D([0, T ];X).
(2) For each f ∈ F sequence Pn ◦ f−1 is tight as a measure on D([0, T ];R).

Proof of Proposition 2.4. Since ω ∈ Ω is fixed, we omit the dependence on it. The proof is
divided into three steps. In the first two, we check the conditions of Proposition 2.5.

In the first step, we establish the compact containment condition. Since for R > 0 sets of the
form KR = {µ : 〈µ, 1〉 ≤ R} ⊆ M(Td) are compact in the weak topology, it is sufficient to show
that

(11) ∀δ > 0, ∃R(δ) > 0,
1

2
> ε(δ) > 0 such that inf

ε∈(0,ε(δ)]
P
(

sup
t∈[0,T ]

〈Y ε
t , 1〉 ≤ R(δ)

)
≥ 1− δ.

In the second step, we establish the one-dimensional tightness. By Proposition 1.23, it is sufficient
to show that for every k ∈ N process 〈Y ε

t , ek〉 is tight in D([0, T ];R). By Aldous’ tightness criterion
[1, Theorem 1] this reduces to proving that for any sequence of stopping times τε, taking finitely
many values and adapted to the filtration of Y ε, and any sequence δε of constants such that
δε → 0 as ε→ 0

(12) ∀δ > 0, lim
ε→0

P
(
|〈Y ε

τε+δε , ek〉 − 〈Y
ε
τε , ek〉| ≥ δ

)
= 0.

In the third step we address the continuity of the limiting process.
Step 1. By Theorem 1.23, for any k ∈ N and ε ≤ ε0(k) there exists an eigenfunction eεk

of Hε such that Πεe
ε
k → ek in C2− d

2
−κ(Td). In particular, since e0 > 0, we may assume that

Πεe
ε
0 > 0, ∀ε ≤ ε0(0) and hence for any positive measure µ there exists a C > 0 such that

〈µ, 1〉 ≤ C〈µ,Πεe
ε
0〉, ∀ε ≤ ε0(0).

Therefore (11) follows if one can show that

∀δ > 0, ∃R(δ) > 0, ε0(0) ≥ ε(δ) > 0 such that inf
ε∈(0,ε(δ)]

P
(

sup
t∈[0,T ]

〈Y ε
t ,Πεe

ε
0〉 ≤ R(δ)

)
≥ 1− δ.

We focus our attention on 〈Y ε
t ,Πεe

ε
0〉. By the martingale representation (9) one obtains

〈Y ε
t ,Πεe

ε
0〉 = 〈Y ε

0 ,Πεe
ε
0〉+

∫ t

0
λε0〈Y ε

r ,Πεe
ε
0〉 − ε%〈

(
ΠεY

ε
r

)2
, ξεΠ

2
εe
ε
0〉 dr +M ε

t (Πεe
ε
0).

To treat the nonlinear quadratic term, we shall consider a stopped process. For that purpose
fix R > 0 and consider a stopping time τR and a parameter %0, defined as

τR := inf{t ≥ 0 : 〈Y ε
t ,Πεe

ε
0〉 ≥ R}, %0 = %− d

2
− 2d.

Since |ξε(x)| . ε−
d
2 one can bound

ε%|〈(ΠεY
ε
r∧τR)2, ξεΠ

2
εe
ε
0〉| . ε%−

d
2
−2d〈Y ε

r∧τR ,Πεe
ε
0〉2 . Rε%0〈Y ε

r∧τR ,Πεe
ε
0〉,

and therefore

E|〈Y ε
t∧τR ,Πεe

ε
0〉|2 . ‖Y ε

0 ‖L∞ + (1 +Rε%0)

∫ t

0
E|〈Y ε

r∧τR ,Πεe
ε
0〉|2 dr + E〈M ε(Πεe

ε
0)〉t∧τR .
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Furthermore, using the formula for the predictable quadratic variation from Lemma 2.2 one
obtains

E〈M ε(Πεe
ε
0)〉t∧τR.E

∫ t

0
〈ΠεY

ε
r∧τR , (Π

2
εe
ε
0)2〉+〈Πε(Y

ε
r∧τRΠεe

ε
0),Π2

εe
ε
0〉dr.E

∫ t

0
〈Y ε
r∧τR ,Πεe

ε
0〉 dr.

Therefore, by Gronwall’s inequality, there exists a C > 0 such that

(13) sup
0≤t≤T

E|〈Y ε
t∧τR ,Πεe

ε
0〉|2 . eCRε

%0
.

It follows that if ε ≤ R−%0

P
(

sup
0≤t≤T

|〈Y ε
t ,Πεe

ε
0〉| ≥ R

)
= P

(
|〈Y ε

τR∧T ,Πεe
ε
0〉| = R

)
. R−2.

This concludes the proof of compact containment condition (11).
Step 2. Fix k ∈ N and γ > 0. In view of calculations from Step 1 there exist R(γ), ε(γ) for

which (11) holds. Up to choosing a smaller ε(γ) we may also assume that

∀ε such that ε(γ) ≥ ε > 0 : ‖ek −Πεe
ε
k‖L∞ ≤

δ

2R(γ)
.

Hence for every ε ≤ ε(γ)

P
(
|〈Y ε

τε+δε , ek〉 − 〈Y
ε
τε , ek〉| ≥ δ

)
≤ γ + P

(
|〈Y ε

τε+δε ,Πεe
ε
k〉 − 〈Y ε

τε ,Πεe
ε
k〉| ≥ δ

)
.

Using representation of Lemma 2.2

〈Y ε
τε+δε ,Πεe

ε
k〉 − 〈Y ε

τε ,Πεe
ε
k〉 =

∫ τε+δε

τε

λεk〈Y ε
r ,Πεe

ε
k〉 − ε%〈

(
ΠεY

ε
r

)2
, ξεΠ

2
εe
ε
k〉dr

+M ε
τε+δε(Πεe

ε
k)−M ε

τε(Πεe
ε
k).

Hence one obtains (writing for simplicity R instead of R(γ)):

P
(
|〈Y ε

τε+δε ,Πεe
ε
k〉 − 〈Y ε

τε ,Πεe
ε
k〉| ≥ δ

)
≤γ + P

(
|〈Y ε

(τε+δε)∧τR ,Πεe
ε
k〉 − 〈Y ε

τε∧τR ,Πεe
ε
k〉| ≥ δ

)
.

Computations analogous to those in Step 1. guarantee that

P
(
|〈Y ε

(τε+δε)∧τR ,Πεe
ε
k〉 − 〈Y ε

τε∧τR ,Πεe
ε
k〉| ≥ δ

)
≤ δ−2E

[∣∣〈Y ε
(τε+δε)∧τR ,Πεe

ε
k〉 − 〈Y ε

τε∧τR ,Πεe
ε
k〉
∣∣2] . δε.

Since γ is arbitrary, this proves (12).
Step 3. So far any limit point Y of the sequence Y ε lies in the Skorohod space D([0, T ];M(Td)).

SinceM(Td) is endowed with the weak topology, to prove that actually Y ∈ C([0, T ];M(Td)),
it is sufficient to show that for any continuous function ϕ, 〈Yt, ϕ〉 is continuous in time. Here one
can apply a criterion [23, Theorem 3.10.2] according to which it is sufficient to prove that the
maximum size of a jump converges weakly to zero. In our case such convergence is even almost
sure, since:

|〈Y ε
t , ϕ〉 − 〈Y ε

t−, ϕ〉| . εd‖ϕ‖C(Td).

This follows from the definition of the generator, as well as the exact definition of η (cf. Equa-
tion (7)) jumps are bounded as follows:

‖Y ε
t − Y ε

t−‖L∞ . ε2−d . 1.

Since a jump has an impact only in a ball Bε(x) for some x ∈ Td, integrating ϕ over such ball
guarantees the previous bound.

�

Finally we are in position to deduce Theorem 1.8.
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Proof of Theorem 1.8. By Proposition 2.4 the sequence Yε(ω) is tight, for every ω ∈ Ω, under
Assumption 2.1 (recall that we can always put ourselves in the setting of this assumption by
changing probability space, which does not affect the convergence in distribution). It remains
to show that, for a fixed realization ω ∈ Ω, every limit point satisfies the martingale problem
for the rough superBrownian motion as in Definition 1.7, which is covered by Step 1, and that
solutions to such martingale problems are unique, which is covered by Step 2.

Step 1. As in the proof of Proposition 2.4, since ω ∈ Ω is fixed we omit writing it. Moreover it is
sufficient to fix a finite but arbitrary time horizon T > 0 and check the martingale property until
that time. Assume that (up to taking a subsequence and applying the Skorohod representation
theorem) Y ε → Y almost surely in D([0, T ];M(Td)). Since Dω is composed of finite linear
combinations of eigenfunctions, it is sufficient to prove the martingale property of Definition 1.7
for ϕ = ek for some k ∈ N. In this setting, one has that almost surely

M ek
t = 〈Yt,0, ek〉 −

∫ t

0
〈Ys,Hek〉ds = 〈Yt,0, ek〉 − λk

∫ t

0
〈Ys, ek〉 ds

= lim
ε→0

[
〈Y ε
t,0,Πεe

ε
k〉 −

∫ t

0
〈Aε(Y ε

r ) + Πε[ξεΠεY
ε
r ],Πεe

ε
k〉−ε%〈

(
ΠεY

ε
r

)2
, ξεΠ

2
εe
ε
k〉 dr

]
= lim

ε→0
M ε
t (Πεe

ε
k).

The convergence of the linear terms in the second line is a consequence of the convergence

Πεe
ε
k → ek in C2− d

2
−κ, λεk → λk

as proved in Theorem 1.23 (where also the eigenpairs eεk, λ
ε
k are defined). As for the non-linear

term, one has, as in the proof of Proposition 2.4,

〈
(
ΠεY

ε
r

)2
, ξεΠ

2
εe
ε
k〉 . ε%−2d− d

2 〈Y ε
r , 1〉2 → 0,

by the assumption on %. To prove that M ek is a martingale, one has to show that such property
is conserved when passing to the limit. For R > 0 consider the stopping times

τR(Y ) = inf{t ≥ 0 | 〈Yt, 1〉 ≥ R} = lim
ε→0

inf{t ≥ 0 | 〈Y ε
t , 1〉 ≥ R} =: lim

ε→0
τR(Y ε).

This sequence is localizing, in the sense that it makes M ek a local martingale with quadratic
variation

〈M ek
·∧τR(Y )〉t = lim

ε→0

[ t∧τR(Y ε)∫
0

〈(1+ε2− d
2 sε)ΠεY

ε
r , (Π

2
εe
ε
k)

2−2ε%Πε
ε(e

ε
k)Πε(Y

ε
r Πεe

ε
k)〉

+ ε%〈
(
Πε(Y

ε
r Πεe

ε
k)
)2
, 1〉 − ε%〈ε2− d

2 sε(ΠεY
ε
r )2, (Π2

εe
ε
k)

2−2ε%Π2
ε(e

ε
k)Πε(Y

ε
r Πεe

ε
k)〉 dr

]
=

∫ t∧τR

0
〈Ys, e2

k〉ds.

To conclude that M ek is itself a square integrable martingale it suffices to observe that:

sup
0≤t≤T

E|〈Yt, 1〉|2 <∞,

which follows by applying Fatou’s lemma, first over ε and then over R, to Equation (13) in the
proof of Propostion 2.4.

Step 2. We conclude by explaining the uniqueness in law of a process Y satisfying the martin-
gale problem of the rough superBrownian motion (in the following as always ω ∈ Ω is fixed, and
we omit from writing it. In particular, all averages are still conditional on the realization of the
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environment). The uniqueness is the consequence of a duality argument. For any ϕ ≥ 0, ϕ ∈ C∞
we find a process t 7→ Utϕ such that

(14) E
[
e−〈Yt,ϕ〉

]
= e−〈Y

0,Utϕ〉.

Hence the distribution of 〈Yt, ϕ〉 is uniquely characterized by its Laplace transform. This also
characterizes the law of the entire process 〈Yt, ϕ〉 through a Dynkin-type argument (see [18,
Lemma 3.2.5]), proving the required result.

We are left with the task of describing the process Utϕ. This is the solution, evaluated at time
t ≥ 0, of the nonlinearly damped parabolic equation

∂t(U·ϕ) = H(U·ϕ)− 1

2
(U·ϕ)2, U0ϕ = ϕ,

where we consider the solutions in the mild sense, namely

Utϕ = etHϕ− 1

2

∫ t

0
e(t−s)H(Usϕ)2 ds,

as constructed in Lemma 2.6. To obtain Equation (14) consider some ζ > 0 and a process
ψ ∈ C([0, T ]; Cζ) of the form

ψt = etHψ0 +

∫ t

0
e(t−s)Hfs ds,

with f ∈ C([0, T ]; Cζ), ψ0 ∈ Cζ . Approximating f through a piece-wise constant function in time
f̃ and approximating both f̃ and ϕ via a finite number of eigenvalues in view of Lemma 6.4, and
using the continuity of the semigroup as in Equation (33), it follows from the definition of the
rough superBrownian motion that for 0 ≤ s ≤ t:

〈Ys, ψt−s〉 − 〈Y0, ψt〉 −
∫ s

0
〈Yr, fr〉 dr =: M̃s(ψ)

is a continuous martingale with quadratic variation

〈M̃(ψ)〉s =

∫ s

0
〈Yr, ψ2

t−r〉 dr.

Now we apply this observation together with Itô’s formula to deduce that

[0, t] 3 s 7→ e−〈Ys,Ut−sϕ〉

is a martingale on [0, t]. In particular, this implies Equation (14) and conclude the proof. �

The following result states the well-posedness of the dual PDE to the rough superBrownian
motion. We will not provide a proof, since it is identical to [45, Proposition 4.5]. The proof is
essentially based on an a-priori L∞ estimate and the regularization properties of the Anderson
Hamiltonian (cf. also the proof of Lemma 6.4).

Lemma 2.6. Under Assumption 2.1, fix ω ∈ Ω. For any ϕ ≥ 0, ϕ ∈ C∞, time horizon T > 0
and ζ < 2− d

2 , there exists a process (t, x) 7→ (Uωt ϕ)(x) such that Uωϕ ∈ C([0, T ]; Cζ), where

Uωt ϕ = etH(ω)ϕ− 1

2

∫ t

0
e(t−s)H(ω)(Uωs ϕ)2 ds.

3. Scaling to FKPP

As in the Section 2, throughout this section we fix one realization ω of the environment and
work conditional on that realization. Unlike Section 2 the probability space remains fixed.

The first step towards the scaling limit is to restate the martingale problem of Lemma 1.3 in
the current setting. The proof is an immediate consequence of the aforementioned lemma.
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Lemma 3.1. Under the assumptions of Theorem 1.16 fix any ω ∈ Ω. For all ϕ ∈ L1(Td), the
process t 7→ 〈Xε

t , ϕ〉 satisfies

(15) 〈Xε
t,s(ω), ϕ〉 =

∫ t

s
〈Aε(Xε

r (ω)), ϕ〉+ 〈Πε

[
ξ̄(ω)(ΠεX

ε
r (ω)− (ΠεX

ε
r (ω))2)

]
, ϕ〉 dr +M ε

t,s(ϕ),

where M ε
· (ϕ) is a centered square integrable martingale with predictable quadratic variation

(16) 〈M ε(ϕ)〉t = εη+d−2

∫ t

0
〈(1+sε(ω))ΠεX

ε
r (ω), (Πεϕ)2−2Πε(ϕ)Πε(X

ε
r (ω)ϕ)〉

+ 〈
(
Πε(X

ε
r (ω)ϕ)

)2
, 1〉−〈sε(ω)(ΠεX

ε
r (ω))2, (Πεϕ)2−2Πε(ϕ)Πε(X

ε
r (ω)ϕ)〉dr.

Now we are able to show tightness for the process.

Proposition 3.2. Under the assumptions of Theorem 1.16 fix any ω ∈ Ω. Fix T > 0 and α
such that {

α ∈ (0, 1/2) if d = 1,

α ∈ (0, η) if d = 2.

The sequence {s 7→ ΠεX
ε
s (ω)}ε∈(0,1/2) is tight in the space

L2([0, T ];Bα
2,2).

In addition, the sequence {s 7→ Xε
s (ω)}ε∈(1,1/2) is tight in D([0, T ];M(Td)), and any limit point

lies in C([0, T ],M(Td)).

A crucial step in the proof of Proposition 3.2 is a compactness criterion due to Simon, which we
recall for convenience. Here the space W 2,ζ([0, T ];Y ) ⊂ L2([0, T ];Y ) is defined by the Sobolev-
Slobodeckij norm

‖f‖W 2,ζ([0,T ];Y ) = ‖f‖L2([0,T ];Y ) +

(∫ T

0

∫ T

0

‖f(t)− f(r)‖2Y
|t− r|2ζ+1

dtdr

)1/2

.

Proposition 3.3 (Corollary 5, [48]). Let X,Y, Z be three Banach spaces such that X ⊂ Y ⊂ Z
with the embedding X ⊂ Y being compact. Then also the following embedding is compact, for
any s > 0:

Lp([0, T ];X) ∩W s,p([0, T ];Z) ⊆ Lp([0, T ];Y ).

Now, we pass to the proof of tightness.

Proof of Proposition 3.2. Since ω ∈ Ω is fixed throughout the proof, we omit writing it, to lighten
the notation. Tightness of the sequence Xε in D([0, T ];M(Td)) is an immediate consequence of
the bound 0 ≤ Xε

t ≤ 1. To show that moreover any limit point lies in C([0, T ];M(Td)) notice
that for any ϕ ∈ C(Td)

|〈Xε
t , ϕ〉 − 〈Xε

t−, ϕ〉| . εη+d‖ϕ‖L∞ ,
so that the maximal jump size is vanishing as ε→ 0. The continuity of the limit points follows
then through [23, Theorem 3.10.2].

Therefore we now concentrate on proving the tightness of the sequence ΠεX
ε
s . For simplicity,

let us define the parameter λ as follows:{
If d = 1, η = 1 ⇒ set λ = 0,

If d = 2, η = 0 ⇒ set λ = η.
(17)

Our aim is to apply Proposition 3.3 with

X = Bα′
2,2, Y = Bα

2,2, Z = Bα′′
2,2,

for appropriate α′ > α > α′′.
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Step 1. First, we derive a uniform bound for the second moment of the Bα
2,2 norm (this in

particular implies boundedness of the sequence ΠεX
ε in L2([0, T ];Bα

2,2)):

(18) sup
ε∈(0,1/2)

sup
0≤t≤T

E‖ΠεX
ε
t ‖2Bα2,2 <∞.

To obtain this bound it is convenient to prove the following, stronger bound. Uniformly over
s ∈ [0, T ]

(19) sup
s≤t≤T

E
[
‖ΠεX

ε
t ‖2Bα2,2

∣∣Fs] .T 1 + ‖ΠεX
ε
s‖2Bα2,2 ,

where {Ft}t≥0 is the natural filtration generated by Xε (we omit the dependence on ε). We
state the bound with the conditional expectation, since in this form it is simpler to derive, via a
Gronwall-type argument. For brevity, fix the notation

X
ε

= ΠεX
ε.

By the martingale representation of Lemma 3.1 and a change of variables formula

X
ε
t = e(t−s)AεX

ε
s +

∫ t

s
e(t−r)AεΠ2

ε

[
ξ
(
X
ε
r − (X

ε
r)

2
)]

dr +

∫ t

s+
Πεe

(t−r)Aε dM ε
r ,

where the last integral is understood as a martingale measure (cf. [52]). However, for the purpose
of the proof it is sufficient to consider its one dimensional projections, that is for ϕ ∈ C(Td)

〈Xε
t , ϕ〉 = 〈Xε

s, e
(t−s)Aεϕ〉+

∫ t

s
〈Π2

ε

[
ξ
(
X
ε
r − (X

ε
r)

2
)]
, e(t−r)Aεϕ〉dr+

∫ t

s+
dM ε

r (Πεe
(t−r)Aεϕ).

The Bα
2,2 norm is estimated by

E
[
‖Xε

t‖2Bα2,2
∣∣Fs] . ‖Xε

s‖2Bα2,2 + E
[∥∥∥∥ ∫ t

s
e(t−r)AεΠ2

ε

[
ξ̄(X

ε
r − (X

ε
r)

2)
]

dr

∥∥∥∥2

Bα2,2

∣∣∣∣Fs]

+ E
[∥∥∥∥ ∫ t

s+
Πεe

(t−r)Aε dM ε
r

∥∥∥∥2

Bα2,2

∣∣∣∣Fs].
An extension of the paraproduct estimates of Lemma B.8 to the Bα

p,q scale (see [3, Theorems
2.82, 2.85]) guarantees that

‖f2‖Bα2,2 ≤ 2‖f 4 f‖Bα2,2 + ‖f � f‖Bα2,2 . ‖f‖L∞‖f‖Bα2,2 ,

and through the Schauder estimates of Proposition 5.7, the L∞ bound on Xε and the fact that
ξ is smooth one obtains

E
[∥∥∥∥ ∫ t

s
e(t−r)AεΠ2

ε

[
ξ̄(X

ε
r − (X

ε
r)

2)
]

dr

∥∥∥∥2

Bα2,2

∣∣∣∣Fs] . |t−s| sup
s≤t≤T

E
[
‖Xε

t‖2Bα2,2
∣∣Fs].

As for the martingale term, by the definition of the space Bα
2,2 one has

ε2λE
[∥∥∥∥ ∫ t

s+
Πεe

(t−r)Aε dM ε
r

∥∥∥∥2

Bα2,2

∣∣∣∣Fs] =
∑
j≥−1

22α

∫
Td
ε2λE

[∣∣∣∣ ∫ t

s+
dM ε

r (e(t−r)AεΠεK
x
j )

∣∣∣∣2 ∣∣∣∣ Fs]dx.
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Using the predictable quadratic variation computed in Lemma 3.1 one obtains, uniformly over x

(20) ε2λE
[∣∣∣∣ ∫ t

s+
dM ε

r (e(t−r)AεΠεK
x
j )

∣∣∣∣2 ∣∣∣∣ Fs]
= ε2λE

[ ∫ t

s
〈Xε

r, (1+sε)
[
(Π2

εe
(t−r)AεKx

j )2−2Π2
ε(e

(t−r)AεKx
j )Πε(X

ε
rΠεe

(t−r)AεKx
j )
]
〉

+ 〈
(
Πε(X

ε
rΠεe

(t−r)AεKx
j )
)2
, 1〉

− 〈(Xε
r)

2, sε
[
(Π2

εe
(t−r)AεKx

j )2−2Π2
ε(e

(t−r)AεKx
j )Πε(X

ε
rΠεe

(t−r)AεKx
j )
]
〉dr

∣∣∣∣ Fs]
. ε2λ

∫ t

s
‖Πε

∣∣Πεe
(t−r)AεKx

j

∣∣‖2L2 dr,

since |sε|, |Xε| ≤ 1. Now, for ζ ∈ R, for example via the Poisson summation formula in Lemma
B.1 and a scaling argument on Rd

‖Kx
j ‖Cζ1 . 2jζ

and therefore by the Schauder estimates of Proposition 5.7 and Lemma B.6, for γ ∈ (0, 1)

‖Πεe
(t−r)AεKx

j ‖Cζ+γ1
. (t−r)−

γ
2 2ζ .

For clarity, dimension d = 1 and dimension d = 2 are treated separately. In dimension d = 1
choose −1

2 < ζ < −α and fix γ ∈ (0, 1) such that ζ + γ > 1
2 . Then, by Besov embeddings, one

has

‖Πε

∣∣Πεe
(t−r)AεKx

j

∣∣‖2L2 ≤ ‖Πεe
(t−r)AεKx

j ‖2L2 . ‖Πεe
(t−r)AεKx

j ‖2Cζ+γ1

. (t−r)−γ22ζ .

In dimension d = 2, where η = λ, choose κ > 0 such that α < η− 5κ and set γ = 1− κ. Then
Lemma B.6 and Besov embeddings B.2 guarantee that

‖Πε

∣∣Πεe
(t−r)AεKx

j

∣∣‖L2 . εη−κ‖
∣∣Πεe

(t−r)AεKx
j

∣∣‖C−η+2κ
2

. εη−κ‖
∣∣Πεe

(t−r)AεKx
j

∣∣‖C−κ 2
1+η−3κ

. εη−κ‖Πεe
(t−r)AεKx

j ‖
L

2
1+η−3κ

. εη−κ‖Πεe
(t−r)AεKx

j ‖C1−η+4κ
1

. εη−κ(t− r)
1−κ
2 ‖Kx

j ‖C−η+5κ
1

. εη−κ(t− r)
γ
2 2−j(η−5κ).

In both dimensions, substituting the estimate into (20) one obtains

E
[∥∥∥∥ ∫ t

s
Πεe

(t−r)Aε dM ε
r

∥∥∥∥2

Bα2,2

∣∣∣∣Fs] . |t− s|1−γ .
For sufficiently small, deterministic T ∗, chosen uniform over all parameters, inequality (19) is
shown for all (t − s) ≤ T ∗. Due to the presence of the conditional expectation, one can exploit
this argument for general t, s via a Gronwall-type argument. Indeed, to extend the estimate to
2T ∗, observe there exists a C(T ∗) such that

sup
t∈[s,s+2T ∗]

E
[
‖ΠεX

ε
t ‖2Bα2,2

∣∣Fs] ≤ C(T ∗)

(
1 + sup

t∈[s,s+T ∗]
E
[
‖ΠεX

ε
t ‖2Bα2,2 |Fs

])
≤ C(T ∗)

(
1 + C(T ∗)

(
1 + E

[
‖ΠεX

ε
s‖2Bα2,2

]))
.

Iterating this argument yields the bound for arbitrary T .
Step 2. The next goal is a bound for the expectation of an increment. For this reason fix

0 < β < α,
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with α as in Step 1. We shall prove that there exists a ζ > 0 satisfying:

(21) E
[
‖Xε

t −X
ε
s‖2Bβ2,2

]
. |t− s|4ζ .

Indeed, arguments similar to those in Step 1. show that

E
[
‖Xε

t −X
ε
s‖2Bβ2,2

]
≤ E

[
‖Xε

t − e(t−s)AεX
ε
s‖2Bβ2,2

]
+ E

[
‖e(t−s)AεX

ε
s −X

ε
s‖2Bβ2,2

]
. E

[
‖Xε

t − e(t−s)AεX
ε
s‖2Bβ2,2

]
+ |t− s|α−βE‖Xε

s‖2Bα2,2
. |t− s|1−γ(1 + E‖Xε

s‖2Bβ2,2
) + |t− s|α−βE‖Xε

s‖2Bα2,2 ,

where the penultimate step follows from Lemma 5.8. This is enough to establish (21).
Step 3. Notice that (18) and (21) together guarantee that

sup
ε∈(0,1/2)

E
[
‖Xε‖2L2([0,T ];Bα2,2) + ‖Xε‖

W 2,ζ([0,T ];Bβ2,2)

]
<∞,

with ζ as in (21). Note that this implies tightness in L2([0, T ];Bα′
2,2) for any α′ < α, which is still

sufficient for the result, since α varies in an open set.
�

At this point, the last step is to prove that any limit point satisfies the required martingale
problem (in d = 1) or solves the required PDE (in d = 2).

Proof of Theorem Theorem 1.16. As in all previous cases, we fix ω ∈ Ω and do not state explicitly
the dependence on it. We treat the drift and the martingale part differently.

Step 1. We start with the drift, which is the same in both dimensions. Since Let X be any
limit point of Xε in C([0, T ];M(Td)). The previous proposition guarantees that any such X lies
almost surely in L2([0, T ];Bα

2,2) for some α > 0. In addition, through Skorohod representation,
we can assume that ΠεX

ε → X in L2([0, T ];Bα
2,2) almost surely. In particular, for ϕ ∈ C∞(Td),

defining

Nϕ
t = 〈Xt,0, ϕ〉 −

∫ t

0
〈Xs, ν0∆ϕ〉+ 〈ξ̄(Xs −X2

s ), ϕ〉 ds,

and since regarding the nonlinear term one can estimate:∫ t

0

∫
Td
|X2

s − (ΠεX
ε)2|dx ds ≤

∫ t

0

∫
Td

2|Xs −ΠεX
ε| dx ds . ‖Xs −ΠεX

ε‖L2([0,T ];Bα2,2)

and applying Lemma 5.5, one has almost surely:

Nϕ
t = lim

ε→0

[
〈ΠεX

ε
t,0, ϕ〉 −

∫ t

0
〈AεXε

s , ϕ〉+ 〈ξ
[
ΠεX

ε
s − (ΠεX

ε
s )2
]
,Π2

εϕ〉 ds
]

=: lim
ε→0

Nϕ,ε
t .

Step 2. Now we prove that Nϕ
t is a centered continuous martingale, with quadratic variation

depending on the dimension. In d = 2 the quadratic variation will be zero and hence Nϕ ≡ 0,
proving that the limit is deterministic (conditional on the environment). Since N ε,ϕ

t is a sequence
of martingales, by Lemma 3.1, the fact that also Nϕ

t is a martingale follows from the uniform
bound of Equation (18) (the continuity of Nϕ is as well a consequence of that proposition). The
quadratic variation of N ε,ϕ is given by:

〈N ε,ϕ〉t = ελ
∫ t

0
〈(1+sε)ΠεX

ε
r , (Π

2
εϕ)2−2Π2

ε(ϕ)Πε(X
ε
rϕ)〉

+ 〈
(
Πε(X

ε
rΠεϕ)

)2
, 1〉−〈sε(ΠεX

ε
r )2, (Π2

εϕ)2−2Π2
ε(ϕ)Πε(X

ε
rΠεϕ)〉ds,
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with λ as in Equation (17). Passing to the limit one has:

lim
ε→0
〈N ε,ϕ〉t = 1{λ=0}

∫ t

0
〈Xs, ϕ

2 − 2Xsϕ
2〉+ 〈X2

s , ϕ
2〉 ds = 1{λ=0}

∫ t

0
〈Xs(1−Xs), ϕ

2〉ds.

This is of the required form for Theorem 1.16. Moreover, a localization argument guarantees
that that 〈Nϕ〉t = limε→0〈N ε,ϕ〉t, thus completing the proof.

�

4. Long-time behaviour of limiting processes

This section is dedicated to proofs of statements on the long time behaviour of the limit-
ing processes. In subsection 4.1, the persistence of rough superBrownian motion is discussed.
Subsection 4.2 covers the long time behaviour of Fisher-KPP equation in rough potential.

4.1. Rough superBrownian motion. In this subsection we briefly discuss the persistence of
the rough superBrownian motion on a torus, providing a sketch of the proof of Proposition 1.11.
The proof is very similar to the proof of [45, Theorem 2.20], but we sketch it here as this result
is crucial for our biological motivation. We begin by recalling a result on the behaviour of
the eignevalues of Anderson Hamiltonian. For the proof in dimension d = 2 we refer to [2,
Theorem 1.7], whereas the bound in dimension d = 1 can be deduced from results in [8], see also
[37, Theorem 2].

Proposition 4.1. Fix (Ω,F ,P) as in Assumption 2.1. For ω ∈ Ω let λ1(ω) be the first eigenvalue
of Anderson Hamiltonian H(ω) as defined in Proposition 1.22. Then there exists a pair of
constants C1 > C2 > 0 such that for x > 0 large enough

e−C2x2−d/2 ≤ P
(
λ1 > x

)
≤ e−C1x2−d/2 .

Proof of Proposition 1.11. Let Yt be a rough superBrownian motion on a torus. For ω ∈ Ω Let
(λ1(ω), e1(ω)) denote the first eigenvalue-eigenfunction pair of the Anderson Hamiltonian H(ω),
with ‖e1(ω)‖L2(Td) = 1. According to Theorem 1.22 e1(ω) is strictly positive. By Proposition 4.1,
P(λ1 > 0) > 0. Hence it is sufficient to prove the claim for all realizations ω such that λ1(ω) > 0.
Under this assumption, by the martingale representation of Yt(ω) observe that

Eω[〈Yt(ω), e1(ω)〉|Fs] = 〈Yt(ω), etH(ω)e1(ω)〉 = 〈Yt(ω), e(t−s)λ1(ω)e1(ω)〉,

which shows that E(t, ω) = 〈Yt(ω), e1(ω)〉 is a martingale. To see that the variance of E(t, ω) is
uniformly bounded in t notice that

Eω[|E(t, ω)− E(0, ω)|2] .
∫ t

0
etH(ω)

(
(e−λ1(ω)se1(ω))2

)
(0)ds

≤ ‖e1(ω)‖L∞
∫ t

0
e−λ1(ω)setH(ω)

(
e−λ1(ω)se1(ω)

)
(0)ds = ‖e1(ω)‖L∞

∫ t

0
e−λ1(ω)se1(ω, 0)ds . 1.

By the martingale convergence Theorem E(t, ω) converges as t tends to infinity to a random
variable E(ω). Since Eω[E(ω)] = E(0, ω) = e(ω, 0) > 0, the random variable E(ω) is positive
with a positive probability. The conclusion for general functions ϕ now follows by an application
of Lemma 6.4. �

4.2. Fisher-KPP. Here we prove Proposition 1.20, dividing it in two steps, according to the
dimension.

Lemma 4.2. Consider a solution X to the stochastic FKPP equation as in Definition 1.14 in
d = 1. P n Pω-almost surely, there exists a finite random time τ such that Xτ ≡ 1 or Xτ ≡ 0.
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Proof. Consider ω ∈ Ω fixed. For convenience, we omit the dependence on ω in the following.
For n ∈ N define Xn

t = Xt+n. Through Schauder estimates similar to the ones in Proposition 3.2
(but here we do not have a jump process, so one can apply the classical Kolmogorov-Chentsov
criterion), one can show that the sequence Xn is tight in Cκ([0, T ];Bκ

2,2) for any T > 0 and some
κ > 0. It is easy to see that any limit point X is constant in time. Moreover, up to changing
probability space, one can assume that almost surely Xn → X ∈ Cκ([0, 2];Bκ

2,2), with X ∈ Bκ
2,2.

First, we prove that either X ≡ 1 or X ≡ 0. Assume by contradiction that 0 ≤ X ≤ 1 is
not trivial. Up to changing probability space once more, one can additionally find a Brownian
motion B such that for zt = 〈Xt, 1〉 and σt =

∫ t
0 〈Xs(1−Xs), 1〉 ds:

zt = z0 +

∫ t

0
〈ξ,Xs(1−Xs)〉ds+Bσt .

Note that zt ∈ [0, 1]. Hence if 〈ξ,X(1 − X)〉 6= 0 (and since σt ' t), the law of the iterated
logarithm brings us to a contradiction, since we would have limt→∞

zt
t 6= 0. Assume then that

〈ξ,X(1−X)〉 6= 0 and consider the process yt =
√
zt. By Itô’s formula:

yt = y0 +

∫ t

0

1

2

〈ξ,Xs(1−Xs)〉
ys

− 1

4

〈1, Xs(1−Xs)〉
y3
s

ds

+

∫ t

0

1

2

〈ξ,Xs(1−Xs)〉
ys

√
〈1, Xs(1−Xs)〉dBs.

The last term has quadratic variation:∫ t

0

1

2

〈ξ,Xs(1−Xs)〉2

y2
s

〈1, Xs(1−Xs)〉 ds . t.

Then again the law of the iterated logarithm would imply that limt→∞ yt = −∞, which again
contradicts yt ∈ [0, 1]. Hence, almost surely X ≡ 0 or X ≡ 1. The same argument proves that
if X ≡ 0, then this point is reached in finite time. A symmetric argument proves the result if
X ≡ 1. �

Lemma 4.3. Consider the solution X to the random FKPP equation as in Definition 1.14
in d = 2. For every ω ∈ Ω such that λ1(∆ − ξ(ω)), λ1(∆ + ξ(ω)) > 0 and assuming that
X0 6≡ 1, X0 6≡ 0, limt→∞X(ω) = X(ω) ∈ Cα for any α > 0, where the latter is the unique
nontrivial (i.e. X 6≡ 1, X 6≡ 0) solution to the equation

∆X(ω) + ξ(ω)X(ω)(1−X(ω)) = 0.

Proof. We fix ω as required and omit writing the dependence on it. The statement is then proven
in [31, Theorem 10.1.5] (that the convergence holds in Cα for any α > 0 is a consequence of the
smoothness of the noise and the a-priori estimates in L∞ for the solution), but to be clear we add
some comments. First, the author proves the result only for Neumann boundary conditions, but
the extension to the periodic case follows with exactly the same argument, mutatis mutandis.
Second, the author proves non-triviality of the limit for the equation

∆X + λξX(1−X) = 0,

for large λ, assuming that
∫
Td ξ(x) dx < 0. The latter condition can be replaced by the fact that

λ1(∆− ξ) > 0, while the first one is equivalent to λ1(∆ + ξ) > 0. Indeed, the precise condition
is that λ > λ0 and the latter, as in [31, Lemma 10.1.2], is the bifurcation point at which the
eigenvalue λ1(∆ + λ0ξ) = 0, so λ0 < 1. �

5. Schauder Estimates

This section is devoted to the proof of Theorem 1.21 and other similar results. Since the central
object in this section, the semidiscrete Laplace operator Aε is defined through convolutions
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with characteristic functions, the first result collects some information that will be useful in the
upcoming discussion.

Lemma 5.1. Let (Dϕ)i = dϕ
dxi

and (D2ϕ)i,j = d2ϕ
dxidxj

indicate the gradient and the Hessian matrix
of a smooth function ϕ : Rd → R respectively. Recall that χ̂ε(k) = χ̂(εk) = FRd(ε

−d1{Bε(0)})(k).
Then:

Dχ̂(0) = 0, D2χ̂(0) = −(2π)2ν0Id,

with

ν0 =
1

12
in d = 1, ν0 =

1

4π
in d = 2.

In particular, for any choice of constants c < 1 < C, there exists a κ(c, C) such that

c ≤ ϑε(k)

−(2π)ν0|k|2
≤ C, ∀k : |k|ε ≤ κ(c, C).

Finally, the decay of χ̂ can be controlled as follows for any n ∈ N and i1, . . . , in ∈ {1, . . . , d}:∣∣∣ dnχ̂(k)

dxi1 · · · dxin

∣∣∣ .n (1+|k|)−
d+1
2 .

The proof of this result is deferred to Section B.1. Instead, we pass to the central result of this
section, from which all other will follow. Recall that Aε is a Fourier multiplier, therefore also
the exponential etAε and the resolvent (−Aε + λ)−1 (for λ > 1) are naturally defined as Fourier
multipliers. As explained already in other points, the action of Aε is different on large and small
Fourier modes. The next result provides the correct choice for this division.

Proposition 5.2. There exists a constant κ0 > 0 such that the following holds. For any p ∈
[1,∞], α ∈ R and j ≥ −1 there exists a c > 0 such that uniformly over ε ∈ (0, 1/2), t ≥ 0, j ≥ −1
and ϕ ∈ Cαp one can bound:

(22)
‖∆jAεϕ‖Lp(Td) . 2−(α−2)j‖ϕ‖Cαp , if 2jε ≤ κ0,

‖∆jAεϕ‖Lp(Td) . ε
−22−αj‖ϕ‖Cαp , if 2jε > κ0.

And similarly for the exponential:

(23)
‖∆je

tAεϕ‖Lp(Td) . e
−ct22j2−αj‖ϕ‖Cαp , for 2jε ≤ κ0,

‖∆je
tAεϕ‖Lp(Td) . e

−ctε−2
2−αj‖ϕ‖Cαp , for 2jε > κ0,

and for the resolvent (uniformly over λ > 1):

(24)
‖∆j(−Aε + λ)−1ϕ‖Lp(Td) .

1

22j + λ
2−αj‖ϕ‖Cαp , for 2jε ≤ κ0,

‖∆j(−Aε + λ)−1ϕ‖Lp(Td) .
1

ε−2 + λ
2−αj‖ϕ‖Cαp , for 2jε > κ0,

Proof. Since all of the estimates follow the same pattern and the first one is particularly simple,
we will mainly discuss the proof of Inequality (23), pointing out how to adapt the calculations
to the other cases. We also restrict to the case

j ≥ 0,

since the case j = −1 is similar but simpler. We begin by restating the inequalities for distribu-
tions on Rd. This is useful because on the entire space we can use scaling arguments. Then we
examine the behaviour on large and small scales separately. The precise separation of modes is
chosen based on Lemma 5.1.
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Step 1. To restate the problem on Rd we extend distributions on the torus periodically. Let
π : S ′(Td)→ S ′(Rd) denote the such periodic extension operator of distribution on Td to the full
space. Its adjoint is the operator π∗ : S(Rd)→ S(Td), given by

π∗ϕ(·) =
∑
k∈Zd

ϕ(·+ k).

We observe that π(Aεϕ) = Aεπ(ϕ), where with a slight abuse of notation we have extended Aε
to act on distributions on the whole space (simply through Equation (4) - and note that it is
still a Fourier multiplier, since for ϕ : Rd → R, Aεϕ = F−1

Rd ϑεFRdϕ). Similarly, by the Poisson
summation formula (Lemma B.1), π(∆jϕ) = ∆jπ(ϕ), the latter defined as the Fourier multiplier
∆jπ(ϕ) = F−1

Rd %jFRdπ(ϕ). As a consequence of this last observation, for any a > d
p (or a ≥ 0 if

p =∞):
‖∆jπ(ϕ)‖Lp(Rd,〈·〉a) 'a,p ‖∆jϕ‖Lp(Td),

where ‖f‖Lp(Rd,〈·〉a) = ‖f(·)/(1+| · |2)
a
2 ‖Lp(Rd). Therefore in order to show (23) it is sufficient to

show that for all ϕ ∈ S ′(Rd) and setting a = d+ 1:

‖∆je
tAεϕ‖Lp(Rd,〈·〉d+1) . e

−ct22j‖∆jϕ‖Lp(Rd,〈·〉d+1), for 2jε ≤ κ0

‖∆je
tAεϕ‖Lp(Rd,〈·〉d+1) . e

−ctε−2‖∆jϕ‖Lp(Rd,〈·〉d+1), for 2jε > κ0

The same holds for (22) and (24), with the natural changes. Hence, from now on let us consider
all functions and operators are defined on Rd. Let ψ be a smooth radial function with compact
support in an annulus (i.e. ψ(k) = 0 if |k| ≤ c1 or |k| ≥ c2 for some 0 < c1 < c2) such that
ρψ = ρ. By Young’s inequality for convolutions and by estimating uniformly over x, y ∈ Rd

(1 + |x|2)−
(d+1)

2 . (1 + |y|2)−
(d+1)

2 (1 + |x− y|2)
d+1
2 ,

one obtains:

‖∆je
tAεϕ‖Lp(Rd,〈·〉d+1) . ‖F−1

Rd (etϑε(·)ψ(2−j ·))‖L1(Rd,〈·〉−(d+1))‖∆jϕ‖Lp(Rd,〈·〉d+1).

In this way, through a change of variables, we reduced the problem to a bound for

(25)
∫
Rd

(1 + 2−2j |x|2)
d+1
2

∣∣∣F−1
Rd

[
etϑε(2

j ·)ψ(·)
]
(x)
∣∣∣ dx

(and similarly for (22) and (24), with etϑε replaced by ϑε and (−ϑε + λ)−1 respectively). Before
we move on, we finally observe that by Lemma 5.1, there exists a κ0 > 0 such that for 2jε ≤ κ0:

1

2
≤ ϑε(2

jk)

−(2π)2ν022j |k|2
≤ 3

2
, ∀k ∈ supp(ψ).

Step 2. We now estimate (25) on large scales, i.e. 2jε ≤ κ0. In this case the term can be
bounded by:∥∥∥F−1

Rd [etϑε(2
j ·)ψ(·)] +

d∑
i=1

∣∣F−1
Rd [∂

2(d+1)
ki

etϑε(2
j ·)ψ(·)]

∣∣∥∥∥
L∞(Rd)

. sup
k∈supp(ψ)

[∣∣etϑε(2jk)ψ(k)
∣∣+

d∑
i=1

∣∣∂2(d+1)
ki

etϑϑ(2jk)ψ(k)
∣∣].

To bound the term involving derivatives we observe that:

D[tϑε(2
j ·)](k) = f(2jεk)t22j |k|, f(k) = 2χ̂(k)

Dχ̂(k)

|k|
.
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where f is smooth on Rd, again by Lemma 5.1. In particular, since 2jε . 1, taking higher order
derivatives one has for any n ∈ N:

∣∣∂nki [tϑε(2j ·)]∣∣(k) . t22j for k ∈ supp(ψ). Now recall Faá di
Bruno’s formula:

∂nxf(g(x)) =
∑
{m}

C({m}, n)(∂m1+···+mn
x f)(g(x))

n∏
j=1

(
∂jxg(x)

)mj
,

where the sum runs over all {m} := (m1, . . . ,mn) such that m1 +2m2 + · · ·+nmn = n. Applying
this formula and by our choice of κ0, there exists a constant c > 0 such that:

sup
k∈supp(ψ)

[
|etϑε(2jk)ψ(k)|+

d∑
i=1

∣∣∂2(d+1)
ki

etϑε(2
jk)ψ(k)

∣∣] . e− 1
2

(2π)2ν0t22j (1+t22j)2(d+1) . e−c(t2
2j).

This concludes the proof of the large-scale bound in (23). For the resolvent equation one similarly
has to bound:

sup
k∈supp(ψ)

[∣∣∣ ψ(k)

−ϑε(2jk) + λ

∣∣∣+
d∑
i=1

∣∣∣∂2(d+1)
ki

ψ(k)

−ϑε(k) + λ

∣∣∣].
Here as before, for the derivative term one has, through the choice of κ0:∣∣∣∣∂nki 1

−ϑε(k) + λ

∣∣∣∣ .∑
{m}

∣∣∣∣ 1

−ϑε(k) + λ

∣∣∣∣1+m1+···+mn n∏
j=1

(
22j
)mj

.
∑
{m}

∣∣∣∣ 1
3
2(2π)2ν022j + λ

∣∣∣∣1+m1+···+mn
(22j)m1+···+mn

.
1

1
2(2π)2ν022j + λ

.
1

22j + λ
,

as requested for (24). The estimate (22) follows similarly.
Step 3. We pass to the small-scale estimates, namely for j such that 2jε > κ0. Here we will

need tighter control on the decay of χ̂(k): since χ is not smooth, the decay at infinity is not faster
than any polynomial and is quantified in Lemma 5.1. We now estimate (25), for s ∈ (d, d + 1),
by:(∫

Rd

1

(1 + |x|)s
dx

)
sup
x∈Rd

[
(1 + |x|s + 2−2j |x|s+(d+1))

∣∣∣F−1
Rd

[
etϑε(2

j ·)ψ(·)
]∣∣∣(x)

]

. ‖eϑε(2j ·)ψ(·)‖L∞ + ‖(1−∆)
s
2 etϑε(2

j ·)ψ(·)‖Lq(Rd) +
d∑
i=1

2−j(d+1)‖∂2(d+1)
ki

etϑε(2
j ·)ψ(·)‖L∞ ,

for any q ∈ (1,∞). As for the first term, since |χ̂(k)| < 1 for k 6= 0 and it decays to zero at
infinity, up to reducing the value of c > 0 we can assume that:

ϑε(2
jk) ≤ −cε−2.

This is sufficient to show:

‖etϑε(2j ·)ψ(·)‖L∞ . e−ctε
−2
,

which is a bound of the required order. As for the second term, denote with Hs
p and Λsp,q the

Bessel potential spaces and Sobolev spaces respectively, following the notation of [51, Section
2.3.5], for which the embedding Λs

′
p,q ⊆ Hs

p holds, it s′ > s. Then since d+ 1 > s one has:

‖(1−∆)
s
2 etϑε(2

j ·)ψ(·)‖Lq=: ‖etϑε(2j ·)ψ(·)‖Hs
q (Rd)

. ‖etϑε(2j ·)ψ(·)‖Λd+1
∞,∞

:=
∑
|α|≤d+1

‖Dαetϑε(2
j ·)ψ(·)‖L∞ ,
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where we write |α| = α1+· · ·+αd for a multiindex α = (α1, . . . , αd) ∈ Nd andDα = d|α|

dα1x1... d
αnxn

.
Now bounding these derivatives is similar to bounding the last term:

d∑
i=1

2−j(d+1)‖∂2(d+1)
ki

etϑε(2
j ·)ψ(·)‖L∞ ,

so we concentrate on the latter, which has the added difficulty of containing derivatives of higher
order, counterbalanced by the factor 2j(d+1). Here observe that for 1 ≤ n ≤ 2(d+ 1):

∂nkie
tϑε(2jk) = ∂n−1

ki

[
etϑε(2

jk)2χ̂(2jεk)[∂kiχ̂](2jεk)
]
· (2jε) · (tε−2).

Iterating the above procedure, we apply Faá Di Bruno’s formula again to obtain∣∣2−j(d+1)∂nkie
tϑε(2jk)

∣∣ . 2−j(d+1)etϑε(2
jk)
∑
{m}

n∏
`=1

(
∂`−1
ki

[
2χ̂(·)[∂kiχ̂(·)]

]∣∣
2jεk
· (2jε)`

)m` · (tε−2)m` .

In view of Lemma 5.1 crucially:

sup
k∈supp(ψ)

|∂`−1
ki

[
2χ̂(·)[∂kiχ̂(·)]

]∣∣
2jεk
| . 1

1+|2jε|d+1
.

Hence, as before up to further reducing the value of c > 0:

‖∂nkie
tϑε(2j ·)‖L∞ . e−ctε

−2
2−j(d+1)(2jε)n

∑
{m}

n∏
`=1

〈2jε〉−m`(d+1)

. e−ctε
−2

2−j(d+1)(2jε)n−(d+1) . e−ctε
−2
,

since at least one of the elements of the sequence m` is strictly positive and since n ≤ 2(d+ 1).
This concludes the proof of (23). Regarding the resolvent, one can follow mutatis mutandis the
previous discussion until one has, as before, to bound:

d∑
i=1

2−j(d+1)
∥∥∥∂2(d+1)

ki

ψ(·)
−ϑε(2j ·) + λ

∥∥∥
∞
.

d∑
i=1

2(d+1)∑
n=0

2−j(d+1)
∥∥∥∂nki 1

−ϑε(2j ·)− λ

∥∥∥
L∞
.

Then again, with Faá di Bruno’s formula:∣∣∣∂nki 1

−ϑε(2jk) + λ

∣∣∣ .∑
{m}

∣∣∣ 1

−ϑε(2jk) + λ

∣∣∣1+m1+···+mn n∏
`=1

∣∣∂`−1
ki

(χ̂(·)∂kiχ̂(·))|2jεk
∣∣m` · (2jε)`m`

.
1

ε−2 + λ

∑
{m}

∣∣∣ 1

ε−2 + λ

∣∣∣m1+···+mn n∏
`=1

( 1

1 + |2jε|

)m`(d+1)
(2jε)`m`

.
1

ε−2 + λ
2j(d+1).

Plugging this into the previous formula provides us the correct bound. Similarly one can also
treat the small-scale estimate for (22). �

The previous proposition motivates the introduction of cut-off operators as follows.

Definition 5.3. Let k : Rd → R be a smooth radial function with compact support which is
constant outside of an annulus ARr = {x ∈ Rd : r ≤ |x| ≤ R} for some 0 < r < R and such that:

k(x) = 1, ∀x ∈ Ar0, k(x) = 0, ∀x ∈ A∞R .

Define
Pε = k(εD), Qε = (1− k)(εD).
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We say that Pε is a projection on large scales, since those Fourier modes describe a function
macroscopically, whereas Qε is a projection on small scales. We furthermore will use for
j ≥ −1, j ∈ Z the notation:

j & ε−1, j . ε−1,

if there exists a constant C > 0 indepdendent of j, ε such that 2jε ≥ C (or, repsectively, 2jε ≤ C).

The next lemma states that the cut-off operators are bounded.

Lemma 5.4. Consider α ∈ R and p ∈ [1,∞]. For k as in Definition 5.3 one can bound uniformly
over ε ∈ (0, 1):

‖Pεϕ‖Cαp . ‖ϕ‖Cαp , ‖Qεϕ‖Cαp . ‖ϕ‖Cαp .

Proof. Let k̂(x) = F−1
Rd k(x). By an application of the Poisson summation formula (Lemma B.1)

and a scaling argument:

‖k(εD)ϕ‖Cαp = sup
j≥−1

2jα‖(F−1
Td [k(ε·)]) ∗∆jϕ‖Lp . ‖F−1

Td [k(ε·)]‖L1(Td)‖ϕ‖Cαp

. ‖ε−dk̂(ε−1·)‖L1(Rd)‖ϕ‖Cαp . ‖ϕ‖Cαp .

The same argument shows that (1− k(a·)) is bounded. �

5.1. Elliptic regularity. In this subsection we prove Theorem 1.21. The theorem is a direct
consequence of the lemma and the proposition that follow.

Lemma 5.5. Fix any α ∈ R, ζ > 0, p ∈ [1,∞]. Uniformly over ϕ ∈ Cαp and ε ∈ (0, 1/2):

‖AεPεϕ‖Cα−2
p
. ‖ϕ‖Cαp .

Moreover, as ε→ 0
Aεϕ→ ν0∆ϕ in Cα−2−ζ

p ,

where
ν0 =

1

12
for d = 1, ν0 =

1

4π
for d = 2.

Proof. On large scales, Proposition 5.2 and Lemma 5.4 implie that

‖AεPεϕ‖Cα−2
p
. ‖Pεϕ‖Cαp . ‖ϕ‖Cαp .

Moreover on small scales the same results guarantee that for any ζ ≥ 0:

‖QεAεϕ‖Cα−2−ζ
p

. ε−2 sup
j&ε−1

2j(α−2−ζ)‖∆jQεϕ‖Lp . εζ‖ϕ‖Cαp ,

which tends to 0 as ε tends to 0 if ζ > 0. Combining those two observations provides the first
bound and guarantees compactness in Cα−2−ζ

p . Convergence follows since, by Lemma 5.1,

FTd [AεPεϕ](k) = k(εk)
χ̂2(εk)−1

ε2
ϕ̂(k)→ −(2π)2ν0|k|2ϕ̂(k) = FTd [ν0∆ϕ](k).

�

The regularity gain provided by the operator Aε can be described as follows (for the proof of
Theorem 1.21 we require the result only for δ = 0).

Proposition 5.6. Fix any α ∈ R, δ ∈ [0, 1] and p ∈ [1,∞]. Uniformly over λ > 1, ε ∈ (0, 1/2)
and ϕ ∈ Cαp the following estimates hold:

λ−δ‖Pε(−Aε + λ)−1ϕ‖Cα+2(1−δ)
p

+ λ−δε−2(1−δ)‖Qε(−Aε + λ)−1ϕ‖Cαp . ‖ϕ‖Cαp .

Moreover, as ε tends to 0,

Pε
(
−Aε − λ

)−1
ϕ→ (ν0∆− λ

)−1
ϕ

where the convergence is in Cα+2−ζ
p for any ζ > 0 and ν0 is as in Lemma 5.5.
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Proof. Consider the large-scale estimate. Proposition 5.2 and Lemma 5.4 guarantee that for
j . ε−1:

‖∆jPε(−Aε + λ)−1ϕ‖Lp .
1

22j + λ
2−αj‖Qεϕ‖Cαp . 2−2j(1−δ)−αjλ−δ‖ϕ‖Cαp ,

which is a bound of the correct order. All other bounds follow similarly, and the proof of the
convergence is analogous to the one in Lemma 5.5. �

5.2. Parabolic regularity. In this subsection we study the regularization effect of the semi-
group etAε . This discussion requires certain spaces of time-dependent functions, which we in-
troduce in the following. Let us fix T > 0 an arbitrary time horizon. All function spaces will
implicitly depend on T . For time dependent functions taking values in a Banach space X the
α-Hölder norm (with α ∈ (0, 1)) is defined as

‖f‖CαX = sup
t∈[0,T ]

‖f(t)‖X + sup
t,s∈[0,T ]

‖f(t)−f(s)‖X
|t−s|α

.

It is convenient to incorporate a blow-up at time t = 0. This reflects the fact that the regular-
ization of the semigroup occurs only at strictly positive times.

EγCαp = {f : (0, T ]→ Cαp | ‖f‖EγCαp = sup
t∈[0,T ]

tγ‖f(t)‖Cαp <∞},

and one can combine the previous spaces in the following way:

L γ,α
p = {f ∈ EγCαp | ‖f‖L γ,α

p
= ‖f‖EγCαp + ‖t 7→ tγf(t)‖Cα/2Lp <∞}.

Now we state the main result of this section, the parabolic Schauder estimates.

Proposition 5.7. Fix p ∈ [1,∞], T > 0, γ ∈ [0, 1) and α ∈ (−2, 0), β ∈ [α, α+2) ∩ (0, 2).
Uniformly over ϕ ∈ Cαp and f ∈ EγTCαp and locally uniformly over T > 0:

‖t 7→ PεetAεϕ‖L (β−α)/2,β
p

. ‖Pεϕ‖Cαp ,(26)

∥∥∥t 7→ ∫ t

0
Pεe(t−s)Aεf(s) ds

∥∥∥
L γ,α+2
p

. ‖Pεf‖EγCαp .(27)

In addition, let ζ1, ζ2 ∈ [0, 1) such that ζ1+ζ2 < 1 and δ1, δ2, δ3 ∈ [0, 1] such that δ1+δ2+δ3 = 1.
Then:

‖t 7→ tζ1+ζ2QεetAεϕ‖Cζ1Cαp . ε
2ζ2‖Qεϕ‖Cαp ,(28)

∥∥∥t 7→ tγ
∫ t

0
e(t−s)AεQεf(s) ds

∥∥∥
Cδ1Cαp

. ε2δ2T δ3‖Qεf‖EγCαp .(29)

with constants independent of f, ϕ, T .

In many steps the proof mimics proofs in [26] and [28], to which we refer the reader for simple
proofs of classical Schauder estimates in the setting of stochastic PDEs.

Proof. Step 1. We begin with large scales, namely (26). By Proposition 5.2:

sup
j≥−1

2βj‖∆jPεetAεϕ‖Lp(Td) . sup
j≥−1

e−ct2
2j

2(β−α)j‖Pεϕ‖Cαp

= t−
β−α
2 sup

j≥−1
e−ct2

2j
(t22j)

β−α
2 ‖Pεϕ‖Cαp . t

−β−α
2 ‖Pεϕ‖Cαp .

Therefore
‖t 7→ PεetAεϕ‖E(β−α)/2Cβp . ‖Pεϕ‖Cαp .
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Similarly, for (27)

sup
j≥−1

2j(α+2)
∥∥∥∫ t

0
∆je

(t−s)AεPεf(s) ds
∥∥∥
Lp(Td)

. ‖Pεf‖EγT Cαp sup
j≥−1

2j2
∫ t

0
e−cs2

2j
(t−s)−γ ds.

which can be bounded by ‖Pεf‖EγT Cαp by the same arguments as in the proof of [26, Lemma A.9].
We still need to address the temporal regularity for both terms. Again, Proposition 5.2 leads to:

(30)
‖(etAε−Id)Pεϕ‖Lp(Td) =

∥∥∥∫ t

0
esAεAεPεϕds

∥∥∥
Lp(Td)

.
∫ t

0
s−1+α

2 ‖Pεϕ‖Cαp ds ' t
α
2 ‖Pεϕ‖Cαp .

To conclude the proof of both (26) and (27) it is now sufficient to follow the same steps as in
[28, Lemma 6.6].

Step 2. We turn our attention to the small scale bounds (28) and (29). Fix ζ1 = δ1 = 0 first.
With calculations in the same spirit as in the Step 1, we arrive at:

‖QεetAεϕ‖Cαp = sup
j≥−1

2αj‖∆jQεetAεϕ‖Lp(Rd) . e
−ctε−2‖Qεϕ‖Cαp . (tε−2)−δ‖Qεϕ‖Cαp .

For the inequality (29), if δ3 > 0 the spatial bound follows from the previous result. If δ3 = 0,
we observe that∥∥∥∫ t

0
Qεe(t−s)Aεf(s) ds

∥∥∥
Cαp
. ‖Qεf‖EγCαp

∫ t

0
e−csε

−2
(t−s)−γ ds . ε2t−γ‖Qεf‖EγCαp .

The last bound in the above inequality is obtained in the same spirit as [26, Lemma A.9]. Namely,
choose λ ∈ (0, t/2) and split the integral at time λ. We note that∫ λ

0
e−csε

−2
(t−s)−γ ds ≤

∫ λ

0
(t−s)−γ ds = t−γ+1

∫ λ/t

0
(1−s)−γ ds . t−γλ,

since, as λ/t ≤ 1/2, 1−(1−λ/t)(1−γ) . λ/t. We then observe that for any % ∈ (0, 1),∫ t

λ
e−csε

−2
(t−s)−γ ds .

∫ t

λ
(sε−2)−(1+%)(t−s)−γ ds . t−γ−%ε2(1+%)

∫ 1

λ/t
s−(1+%)(1−s)−γ ds

. t−γε2(1+%)λ−%.

If ε2 ≤ t/2, choosing λ = ε2 provides the result. Otherwise, one simply notes that∫ t

0
e−csε

−2
(t−s)−γ ds . t1−γ . t−γε2.

Step 3. We now investigate the full temporal regularity for (28) and (29), that is, we allow for
ζ1, δ1 > 0. We first observe that for δ ∈ [0, 1)
(31)

‖(etAε−Id)Qεϕ‖Cαp =
∥∥∥∫ t

0
esAεAεQεϕds

∥∥∥
Cαp
.‖Qεϕ‖Cαp

∫ t

0
(sε−2)−δε−2 ds=‖Qεϕ‖Cαp ε

2(δ−1)t1−δ.

For δ ∈ [0, 1) and ζ = ζ1+ζ2 ∈ [0, 1), the temporal regularity of the first terms can be established
via

‖tζetAεQεϕ−sζesAεQεϕ‖Cαp . (tζ−sζ)t−ζ2ε2ζ2‖Qεϕ‖Cαp + sζ‖(e(t−s)Aε−Id)esAεQεϕ‖Cαp
. (tζ−sζ)t−ζ2ε2ζ2‖Qεϕ‖Cαp + sζ(t−s)1−δε2(δ−1)‖esAεQεϕ‖Cαp
. [(tζ−sζ)t−ζ2ε2ζ2 + (t−s)1−δε2(δ−1)ε2ζ ]‖Qεϕ‖Cαp . (t−s)ζ1ε2ζ2‖Qεϕ‖Cαp ,

where in the last step we set δ = 1−ζ1 and notice that (tζ−sζ)t−ζ2 . (t−s)ζ1 .
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The bound for (29) follows similar pattern. For simplicity write V (t) =
∫ t

0 e
(t−s)AεQεf(s) ds.

Then

‖tγV (t)−sγV (s)‖Cαp ≤(tγ−sγ)‖V (t)‖Cαp +sγ
∥∥∥∫ t

s
e(t−r)AεQεf(r)dr

∥∥∥
Cαp

+sγ‖(e(t−s)Aε−Id)V (s)‖Cαp .

The only term for which the estimation does not follow the already established pattern is the
one in the middle, for which we observe that

sγ
∥∥∥∫ t

s
e(t−r)AεQεf(r) dr

∥∥∥
Cαp
. sγ

∫ t

s
((t−r)ε−2)−δ2r−γ dr‖Qεf‖EγCαp

. ‖Qεf‖EγCαp ε
2δ2sγt−δ2−γ+1

∫ 1

s/t
(1−r)−δ2r−γ dr . ‖Qεf‖EγCαp ε

2δ2t1−δ2
∫ 1

s/t
(1−r)−δ2 dr

. ‖Qεf‖EγCαp ε
2δ2t1−δ2(1−s/t)1−δ2 ≤ ‖Qεf‖EγCαp ε

2δ2(t−s)1−δ2 ≤ ‖Qεf‖EγCαp ε
2δ2T δ3(t−s)δ1 ,

which completes the proof of the proposition. �

The following result is essentially a by-product of the previous proof, but deserves a separate
statement, for later use.

Lemma 5.8. Consider α, β ∈ R and p ∈ [1,∞] with γ := α−β ∈ [0, 2]. Then uniformly over ϕ:

‖(etAε − Id)ϕ‖Cβp . t
γ
2 ‖ϕ‖Cαp .

Proof. The proof follows from Proposition 5.7. Indeed, Equation (30) implies that for j . ε−1

one has:
2jβ‖(etAε − Id)∆jϕ‖Lp . t

γ
2 2iβ‖∆jϕ‖Cγp . t

γ
2 ‖ϕ‖Cαp .

While a slight modification (to Lp spaces) of (31) guarantees that for j & ε−1:

2jβ‖(etAε − Id)∆jϕ‖Lp . t
γ
2 2jβε−γ‖∆jϕ‖Lp . t

γ
2 2jα‖∆jϕ‖Lp . t

γ
2 ‖ϕ‖Cαp .

This concludes the proof. �

6. Semidiscrete Parabolic Anderson Model

This section is devoted to the proof of Theorem 1.23. This theorem is an approximation result
for the continuous Anderson Hamiltonian in dimension d = 1 and d = 2. Before we proceed, let
us collect some basic ideas of the proof that will follow. First, recall that (see Appendix B) given
two distributions ϕ ∈ Cα, ψ ∈ Cβ , their product can be decomposed as ϕψ = ϕ4ψ+ϕ�ψ+ψ5ϕ,
where the central term ϕ� ψ, called resonant product, is well-defined if α + β > 0 (while both
other terms are always defined).

The proof of the theorem concentrates on the two-dimensional case, since here the resolvent
equation (−ν0∆ + λ)u = (u − ∞1{d=2})ξ is a singular stochastic PDE, in the sense that the
expected regularity of u, namely C1−κ, for any κ > 0, is not sufficient to define the product
with the distribution ξ, of regularity C−1−κ (in d = 1 the product is still well-defined and the
discussion that follows is not required). In the construction of the Hamiltonian in d = 2 we
follow the results in [2] that rely on paracontrolled calculus. In a nutshell (we refer the reader to
[26] and [28] for a more in-depth discussion), this approach follows the Ansatz that the solution
u to the previous equation is of the form u = u′ 4 Xλ + u], the previous being a paraproduct
(see Appendix B.2) with Xλ solving (−ν0∆ + λ)Xλ = ξ, and u] ∈ C1+κ (we will call a u of this
form paracontrolled). This should be interpreted as a “Taylor expansion” in terms of functionals
of the noise, and the reason why the rest term is expected to be of better regularity is encoded
in the concept of subcriticality, introduced in [29]. Now, for paracontrolled u the previously
ill-defined product can be rewritten as uξ = (u′ 4Xλ)ξ + u]ξ. While the last term is now well-
defined, a commutator estimate (see Lemma B.10) guarantees that the resonant product can be
approximated as (u′4Xλ)�ξ ' u′(Xλ�ξ). The latter resonant product Xλ�ξ remains still ill-
defined in terms of regularity, but one can make sense of it through some Gaussian computations
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(since Xλ is also Gaussian), up to renormalization. By this we mean that the product lives in
two levels of the Wiener chaos. While the second chaos part turns out to be well-defined, the
zeroth chaos is actually diverging. Eventually, one can rigorously define a distribution Xλ � ξ
that formally can be written as Xλ � ξ −∞ = Xλ � ξ − E

[
Xλ � ξ

]
, which lives in the second

Wiener chaos and explains the ∞ appearing in the equation.
In the cartoon we have just sketched, we hope to explain that the theories for singular sto-

chastic PDEs have two critical ingredients. First, some stochastic computations guarantee the
existence of certain products of random distributions. Second, given a realization of these distri-
butions, an purely analytic argument, based on regularity estimates and a Taylor-like expansion
guarantee the existence of a solution to the PDE.

In the present setting we concentrate on semidiscrete approximations of the Anderson Hamil-
tonian, that is we will prove that u as a above is the limit u = limε→0 uε, with (−Aε + λ)uε =
(ξε − cε1{d=2})uε. Following the previous explanation we will first prove some stochastic esti-
mates and then pass to the main analytic result. The next definition introduces the space in
which we will control the stochastic terms.

Definition 6.1. Let d = 2 and fix any κ > 0. For any ε ∈ (0, 1/2) we will call an enhanced
noise a vector of distributions

ξε = (ξε, Xε,λ, Yε,λ),

for which the following norm is finite:

|||ξε|||ε,κ := sup
ζ∈[0,1]

εζ
{
‖ξε‖C−(1−ζ)−κ2 + ‖PεXε,λ‖C−(1−ζ)+2−κ2 + ε−2‖QεXε,λ‖C−(1−ζ)−κ2

}
+ ε‖ξε‖L∞ + ε−1‖QεXε,λ‖L∞ + ‖Yε,λ‖C−κ2 .

Proposition 6.2. Let (Ω,F ,P) be a probability space supporting a sequence of random functions
ξε : Td → R as in Assumption 1.5. Furthermore, in dimension d = 2, for λ > 1, define

Xε,λ = (−Aε + λ)−1ξε, ξε �Π2
εXε,λ = ξε �Π2

εXε,λ − cε,

where

cε =
∑
k∈Z2

χ̂2(εk)χ̂Q(εk)

−ϑε(k) + λ
, with cε ' log

1

ε
.

For any κ > 0 one can bound in dimension d = 1:

sup
ε∈(0,1/2)

E
[

sup
ζ∈[0,1]

ε
ζ
2 ‖ξε‖C− 1

2 (1−ζ)−κ2
+ ε‖ξε‖L∞

]
<∞.

And in dimension d = 2, again for any κ > 0, with ξε = (ξε, Xε,λ, ξε �Π2
εXε,λ):

sup
ε∈(0,1/2)

E
[
|||ξε|||ε,κ

]
<∞.

Moreover, there exists a probability space (Ω,F ,P), supporting space white noise ξ on Td, and
a sequence of random functions ξε : Td → R such that ξε = ξε in distribution and such that for
almost all ω ∈ Ω:

ξε(ω)→ ξ(ω) in C−
d
2
−κ.

In addition, in dimension d = 2, there exists also a random distribution ξ �Xλ such that:

Pε(−Aε + λ)−1ξε(ω)→ (−∆ + λ)−1ξ(ω) in C−
d
2

+2−κ, ξε �Π2
εXε,λ → ξ �Xλ(ω) in C−κ.

The proof of this result is rather technical, and for the sake of readability deferred to the
end of this section. Having fixed the correct probability space, we are now in position to prove
Proposition 1.22. We will work under the following convention.
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Assumption 6.3. Up to changing the probability space (Ω,F ,P), we assume that for all κ > 0
and almost all ω ∈ Ω the convergences in Proposition 6.2 hold true. If d = 2 we additionally
assume that:

sup
ε∈(0,1/2)

|||ξε(ω)|||ε,κ <∞.

Proof of Proposition 1.22. The Hamiltonian H(ω) has been constructed in dimension d = 1
in [25] (albeit with Dirichlet boundary conditions, but the construction for periodic boundary
conditions is identical) and in dimension d = 2 in [2], for almost all ω ∈ Ω (with the latter space
satisfying the convention above). In both cases H(ω) is an unbounded, selfadjoint operator on
L2, that is:

H(ω) : D(H(ω)) ⊂ L2 → L2.

In particular, in d = 2 [2, Proposition 4.13] implies that the operator H(ω) admits compact
resolvents (cf. [25, Section 2] for the analogous discussion in d = 1). Hence the spectrum of
H(ω) is discrete and the eigenvalues converge to −∞. By a classical result, see [44, Theorem 3.3],
the semigroup generated by H(ω), denoted by etH(ω), is compact. Moreover, as a consequence
of strong maximum principle (in d = 2 such result for singular stochastic PDEs is proven in [9,
Theorem 5.1 and Remark 5.2], the semigroup etH(ω) is strictly positive: that is, for any non-
zero function f such that ∀x ∈ TdetH(ω)f(x) > 0. Therefore since etH(ω) is a compact, strictly
positive operator, the Krein-Rutman Theorem implies that the largest eigenvalue of H(ω) has
multiplicity one and the associated eigenfunction is strictly positive.

To conclude the analysis of spectral properties of H(ω) it remains to show the regularity of
the eigenfunctions, and their density. For the sake of clarity, this part of the proof can be found
in Lemma 6.4 below. �

Lemma 6.4. Under Assumption 6.3, fix ω ∈ Ω. Consider the Anderson Hamiltonian H(ω) as
in the previous Proposition. Define the domain:

Dω = {Finite linear combinations of {ek(ω)}k∈N}.

Such domain is dense in C(Td) and Dω ⊆ C2− d
2
−κ for any κ > 0. Moreover, for ϕ ∈ C∞ and

ζ < 1 there exists a sequence ϕk ∈ Dω with limk→∞ ϕ
k = ϕ in Cζ .

Proof. Since ω ∈ Ω is fixed, we avoid writing it to lighten the notation. As the statement
regarding the approximation of ϕ in Cζ implies density in C(Td) we also restrict to just proving
the latter. First, we require some better understanding of the parabolic Anderson semigroup.
Here we make use of some known regularization results.

Step 1. Consider the operator H as in Proposition 1.22: Taking an exponential one can
construct the semigroup:

etH : L2(Td)→ L2(Td).
This semigroup inherits some of the regularizing properties of the heat semigroup, namely, for
T > 0 and p ∈ [1,∞] it can be extended so that:

(32) sup
0<t≤T

tγ‖etHϕ‖Cαp . ‖ϕ‖Cβp ,

for α and β satisfying:

γ >
α− β

2
, β + 2 >

d

2
, α < 2− d

2
, α > β.

The first constraint is essentially identical to the one appearing in Schauder estimate (cf. Propo-
sition 5.7), the second one guarantees that the product et∆ϕ · ξ is a well-defined product of
distributions, while the third constraint is due to the fact that ∫ t0 e(t−s)∆ξ ds has always worse
regularity than 2 − d

2 . We will not prove these results: instead we refer to [45, Proposition
3.1] and the reference therein (the cited proposition is set on the entire space, with the added
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complication of weights at infinity. Such case contains the current setting by extending the noise
periodically). The same results guarantee that in the case β > 2− d

2 and for ζ < 2− d
2 one has:

(33) sup
0≤t≤T

‖etHϕ‖Cζp . ‖ϕ‖Cβp .

Step 2. Applying iterativrly Equation (32) and Besov embeddings implies that ek ∈ C2− d
2
−κ

for any κ > 0. Hence the embedding Dω ⊆ C2− d
2
−κ is established. Now we prove the statement

regarding the approximability of ϕ. For any ϕ ∈ C∞ and ζ = 1 − κ < 1 (for some κ > 0) one
has:

lim
t→0+

1

t

∫ t

0
esHϕds = ϕ in Cζ .

This can be seen as follows: Equation (33) implies that

sup
0≤t≤T

∥∥∥∥1

t

∫ t

0
esHϕds

∥∥∥∥
Cζ′

<∞,

for ζ < ζ ′ < 2− d
2 . This guarantees compactness in Cζ . Projecting on the eigenfunctions ek one

sees that any limit point is necessarily ϕ. Hence fix any ε > 0 and choose t(ε) such that∥∥∥∥ 1

t(ε)

∫ t(ε)

0
esHϕds− ϕ

∥∥∥∥
Cζ
<
ε

2
.

Define Π≤Nϕ =
∑N

k=0〈ϕ, ek〉ek. Since the projection commutes with the operator, the proof is
complete if we can show that there exists an N(ε) such that:∥∥∥∥ 1

t(ε)

∫ t(ε)

0
esH(Π≤N(ε)ϕ− ϕ) ds

∥∥∥∥
Cζ
≤ ε

2
.

Here we use (32) to bound for general ψ ∈ L2:∥∥∥∥ 1

t(ε)

∫ t(ε)

0
esHψ ds

∥∥∥∥
Cζ
.

1

t(ε)

∫ t(ε)

0

(s
2

)−( 1
2
−κ

4

)
‖e

s
2
Hψ‖C−κ2 ds

.
1

t(ε)

∫ t(ε)

0

(s
2

)−( 1
2
−κ

4

)
‖e

s
2
Hψ‖

C
d
2−

κ
2

2

ds

.
1

t(ε)

∫ t(ε)

0
s−1+κ

4
+κ

8 ds‖ψ‖L2 . t(ε)−1+ 3κ
8 ‖ψ‖L2 ,

where we additionally applied Besov embeddings. Choosing N(ε) such that ‖Π≤Nϕ − ϕ‖L2 .

t(ε)1− 3κ
8
ε
2 , the proof is complete. �

Now we pass to the main result of this section.

Proof of Theorem 1.23. As in the previous proof, we fix ω ∈ Ω, the latter satisfying Assump-
tion 6.3, but to lighten the notation we avoid writing explicitly the dependence on ω in what
follows. We restrict our attention to dimension d = 2. In dimension d = 1 the proof is similar,
but simpler. For λ ∈ R define

Hε,λ : L2 → L2, Hε,λψ = (Aε + (ξε−cε)Π2
ε − λ)ψ.

Let us assume that there exists a λ̄ > 0 such that for all λ ≥ λ̄ and ε ∈ (0, 1/2) the operator
Hε,λ is invertible and

(34) lim
ε→0
‖H−1

ε,λ − (H− λ)−1‖B(L2,L2) = 0

where B(X,Y ) is the space of bounded linear operators between two Banach spaces X,Y with
the standard operator norm. By the continuity of the spectrum, see [33, Chapter 4, Theorem



THE SPATIAL Λ-FLEMING-VIOT PROCESS IN A RANDOM ENVIRONMENT 35

3.16], and (34), it follows that for any k ∈ N there exists a ε0(k) and eigenvalues and associated
an associated eigenfunction (λεk, e

ε
k) ∈ R× L2 such that

lim
ε→0

λεk = λk, lim
ε→0

eεk = ek in L2.

Hence, to conclude the proof we have to prove (34) as well as the convergence of the eigenfunctions
in C1−κ (the previous argument guarantees convergence only in L2). The strategy of the proof
is a perturbation of the proof in [2] and is based on a fixed point argument. In Step 1 we solve
the resolvent equation through such fixed point argument, uniformly over ε and λ large enough.
The precise estimates for this fixed point are discussed in Step 2 and the convergence to the
continuous Anderson Hamiltonian is established in Step 3. In the fourth step we show that
Πεe

ε
k → ek ∈ C1−κ. Throughout the proof the parameter κ > 0 will be chosen small enough, so

that all computations hold.
Step 1. Fix p ∈ [1,∞] as well as ϕ ∈ C−1+2κ

p . In dimension d = 1, solving the resolvent
equation Hε,λψ = ϕ is equivalent to solving the fixed point problem

(35) ψ = Mϕ,λ(ψ) := (−Aε + λ)−1[(ξε−cε)Π2
εψ − ϕ].

In dimension d = 2 we will not prove directly that Mϕ,λ is a contraction (while in d = 1 this
is the case: the arguments that follow are not required and Proposition 5.6 allows to find a fixed
point ψ ∈ C

3
2
−κ

p ). To find the fixed point we look for a paracontrolled solution. Consider a space
Dε ⊆ Lp(Td)× Lp(Td) which, for a pair (ψ′, ψ]) is characterized by the norm

‖(ψ′, ψ])‖Dε := ‖ψ′‖C1−κp
+ ‖Pεψ]‖C1+κp

+ ε−2+κ‖Qεψ]‖C−1+2κ
p

.

A function ψ is associated to a pair (ψ′, ψ]) by

ψ = ψ′ 4 [(−Aε + λ)−1ξε] + ψ].

With an abuse of notation, we identify the pair (ψ′, ψ]) with the function ψ and write ‖ψ‖Dε =
‖(ψ′, ψ])‖Dε . Define a map (note the presence of ψ′) Mϕ,λ : Dε → Lp as

Mϕ,λ(ψ) := (−Aε + λ)−1[ξεΠ
2
εψ − cεψ′ − ϕ].

The map Mϕ,λ can be extended to a map from Dε into itself by

Mϕ,λ(ψ) = (M ′ϕ,λ(ψ), M ]
ϕ,λ(ψ)) := (Π2

εψ, Mϕ,λ(ψ)− (Π2
εψ) 4 [(−Aε + λ)−1ξε]) ∈ Dε,

The fixed point ofMϕ solves (35) as well, since the fixed point satisfies

ψ′ = Π2
εψ.

Step 2. In the course of the proof we repeatedly make use of the elliptic Schauder estimates
of Proposition 5.6 and the paraproduct estimates of Lemma B.8, without stating them explicitly
every time. The aim is to control

‖Mϕ,λ(ψ)‖Dε = ‖Π2
εψ‖C1−κp

+ ‖Pε M ]
ϕ,λ(ψ)‖C1+κp

+ ε−2+κ‖Qε M ]
ϕ,λ(ψ)‖C−1+2κ

p
.

Via Lemma B.6

(36)

‖Π2
εψ‖C1−κp

. ‖Π2
ε

[
ψ′ 4Xε,λ

]
‖C1−κp

+ ‖Pεψ]‖C1+κp
+ ε−2+κ‖Qεψ]‖C−1+2κ

p

. λ−
κ
4 ‖ψ′‖C1−κp

(‖PεXε,λ‖C1−κ2 + ε−2‖QεXε,λ‖C−1−κ2 )

+ ‖Pεψ]‖C1+κp
+ ε−2+κ‖Qεψ]‖C−1+2κ

p
.

To tackle the norms M ], first rewrite as

M ]
ϕ(ψ) = (−Aε + λ)−1

{
− ϕ+ [ξε �Π2

εψ
]]+
{
ξε � [Π2

ε(ψ
′ 4Xε,λ)]− cεψ′

}
+ξε 4Π2

εψ + Cε,λ(Π2
εψ, ξε)

}
,
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where Cε,λ(Π2
εψ, ξε) is the commutator

Cε,λ(Π2
εψ, ξε) = (−Aε + λ)−1[(Π2

εψ) 4 ξε]− [(Π2
εψ)4 (−Aε + λ)−1(ξε)].

Combining the Schauder estimates with the smoothing properties of Πε and the paraproduct
estimates one finds that

λ
κ
2
(
‖PεM ]

ϕ(ψ)‖C1+κp
+ ε−2+κ‖QεM ]

ϕ(ψ)‖C−1+2κ
p

)
. ‖ϕ‖C−1+2κ

p
+ ‖Π2

εψ
]‖C1+κp

‖ξε‖C−1−κ2

+ ‖ξε � [Π2
ε(ψ
′ 4Xε,λ)]− cεψ′‖C−1+2κ

p
+ ‖Cε,λ(ψ, ξε)‖C−1+2κ

p
.

To treat ‖ξε � [Π2
ε(ψ
′ 4Xε,λ)− cεψ′]‖C−1+2κ

p
, we introduce (cf. B.9) the commutators

CΠ
ε (f, g) = Π2

ε(f 4 g)− f 4Π2
εg, C�(f, g, h) = f � (g 4 h)− g(f � h).

By Lemma B.11

‖ξε � CΠ
ε (ψ′, Xε,λ)‖C−1+2κ

p
≤ ‖ξε � CΠ

ε (ψ′, Xε,λ)‖Cκp
. ‖ξε‖C−1−κ2 ‖PεC

Π
ε (ψ′, Xε,λ)‖C1+κp

+ ‖ξε‖C−1+κ‖QεCΠ
ε (ψ′, Xε,λ)‖

C
1−κ2
p

. ‖ψ′‖C1−κp
|||ξε|||

2
ε,κ.

We deduce that

‖ξε � [ψ′ 4 (Π2
εXε,λ)]− cεψ′‖C−1+2κ

p
.‖C�(ξε, ψ

′, Xε,λ)‖C−1+2κ
p

+ ‖ψ′(ξε �Π2
εXε,λ − cε)‖C−1+2κ

p
.

By Lemma B.10

‖C�(ξε, ψ
′, Xε,λ)‖C−1+2κ

p
≤ ‖C�(ξε, ψ

′, Xε,λ)‖C−2κ
p

. ‖ξε‖C−1−κ2 ‖ψ
′‖C1−κp

‖Π2
εXε,λ‖C1−κ2 . ‖ψ

′‖C1−κ
p
|||ξε|||

2
ε,κ.

Similarly

‖ψ′(ξε �Π2
εXε,λ − cε)‖C−1+2κ

p
. ‖ψ′‖C1−κp

‖ξε �Π2
εXε,λ − cε‖C−1+2κ ≤ ‖ψ′‖C1−κp

|||ξε|||ε,κ.

The estimate for Cε,λ(Π2
εψ, ξε) follows from Lemma B.12, by noticing that

‖Cε,λ(Π2
εψ, ξε)‖C−1+2κ

p
≤ ‖PεCε,λ(Π2

εψ, ξε)‖C−1+2κ
p

+ ‖QεCε,λ(Π2
εψ, ξε)‖C−1+2κ

p

. ‖Π2
εψ‖C1−κp

‖ξε‖C−1−κ2 + ε2‖Π2
εψ‖C1−κp

‖ξε‖C−1+2κ . ‖ψ‖Dε |||ξε|||ε,κ.

Step 3. Estimates from Step 2 combined with linearity guarantee that that for n ∈ N, n ≥ 2
there exists a C > 0 such that

‖Mϕ(ψ)‖Dε ≤ C
[
‖ϕ‖B−1+2κ

p,q
+ ‖ψ‖Dε(1 + |||ξε|||ε,κ)2

]
‖
[
Mϕ(ψ)−Mϕ(ψ̃)

]n‖Dε ≤ C[λ−κ4 ‖ψ − ψ̃‖Dε(1 + |||ξε|||ε,κ)2
]
.

Note that we require n ≥ 2, since in (36) we do not have a small factor in front of the rest term
with ψ]. In particular, there exists a λ̄(supε|||ξε|||ε,κ) such that for λ > λ̄ the mapMϕ admits a
unique fixed point, which we denote by H−1

ε,λϕ. Moreover, by the Banach fixed point theorem

‖H−1
ε,λϕ‖Dε . ‖M

2
ϕ(0)‖Dε . ‖ϕ‖C−1+2κ

p
(1 + |||ξε|||ε,κ)2,

implying that H−1
ε,λ ∈ B(C−1+2κ

p ,Dε), with the norm bounded uniformly in ε. Similar, but less
involved calculations lead to a construction of the resolvent H−1

λ = (H− λ)−1 in the continuum
for λ ≥ λ̄. This is a bounded operator H−1

λ ∈ B(C−1+2κ
p ,D0), where the latter is the Banach

space defined by the norm (for ψ = ψ′ 4 (−∆ + λ)−1ξ + ψ]):

‖ψ‖D0 = ‖ψ′‖C1−κp
+ ‖ψ]‖C1+κp

.
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By linearity and computations on the line of to those in Step 2:

(37) lim
ε→0

sup
‖ϕ‖C−1+2κ

p
≤1

∥∥∥(H−1
ε,λϕ)′ − (H−1

λ ϕ)′
∥∥∥
C1−κp

+
∥∥∥Pε(H−1

ε,λϕ)] − (H−1
λ ϕ)]

∥∥∥
C1+κp

= 0.

To show (34) it would be sufficient to show (in the particular case p = 2) that Dε ↪→ Lp, in the
sense that ‖ψ‖Lp . ‖ψ‖Dε . Unfortunately, this is not the case, because Qεψ] ∈ C−1+2κ

p . So we
need a better control on the regularity of ψ], which we will obtain by using that ϕ ∈ Lp, namely:

λ
κ
2 ε−2+4κ‖QεM ]

ϕ(ψ)‖Lp . ε3κ
{
‖ξεΠ2

εψ − cεψ′ − ϕ‖Lp + ‖(Π2
εψ) 4Xε,λ‖Lp

}
and since cε . log 1

ε (see Proposition 6.2)

‖ξεΠ2
εψ − cεψ′ − ϕ‖Lp . ‖ξε‖C−1+2κ‖Π2

εψ‖C1−κp
+ ε−κ‖ψ′‖Lp + ‖ϕ‖Lp .

Similarly, since

‖f 4 g‖Lp ≤ ‖fg‖Lp + ‖g 4 f‖Lp + ‖f � g‖Lp . ‖f‖Cκp ‖g‖L∞ .

one has

‖(Π2
εψ) 4Xε,λ‖Lp . ‖Π2

εψ‖C1−κp
‖Xε,λ‖L∞ .

Therefore the L∞ bound on QεXε,λ leads to

(38) λ
κ
2 ε−2+4κ‖QεM ]

ϕ(ψ)‖Lp . ‖ϕ‖Lp + ‖ψ‖Dε(1 + |||ξε|||ε,κ).

In particular, the regularity of the resolvent map H−1
ε,λ is enhanced by

ε−2+4κ‖Qε(H−1
ε,λϕ)]‖Lp . ‖ϕ‖Lp .

This leads to the embedding Dε ↪→ Lp which justifies

‖H−1
ε,λϕ−H

−1
λ ϕ‖Lp ≤ ‖(H−1

ε,λϕ)′ 4Xε,λ − (H−1
λ ϕ)′ 4 (−∆ + λ)−1ξ‖Lp

+ ‖Pε(H−1
ε,λϕ)] − (H−1

λ ϕ)]‖Lp + ‖Qε(H−1
ε,λϕ)]‖Lp .

Letting p = 2 and sending ε to 0 together with (37) and (38) proves (34).
Step 5. It remains to show that

Πεe
ε
k → ek in C1−κ.

Since the embedding Cαp ⊆ Cα
′

p is compact for α > α′, and since κ can be chosen in arbitrary
way, and we already established the convergence of eεk in L2 and hence also in the sense of
distributions, it is sufficient to show that

sup
ε
‖Πεe

ε
k‖C1−κ <∞.

Due to the normalization we also already have a uniform bound in L2:

sup
ε
‖Πεe

ε
k‖L2 ≤ 1.

Now, choose λ > λ̄ (and hence λ > supε λ
ε
k), then one can rewrite:

eεk = (λεk − λ)H−1
ε,λe

ε
k.

So that

eεk = (eεk)
′ 4Xε,λ + (eεk)

],

and by all the bounds in the proof of the previous step:

sup
ε

{
‖eεk‖Dε + ε−2+4κ‖Qε(eεk)]‖L2

}
<∞,
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where we use the space Dε in the case p = 2. Hence, applying Lemma B.6, one obtains:

‖Πεe
ε
k‖C1−κ2

. ‖Πε

[
(eεk)

′ 4Xε,λ

]
‖C1−κ2

+ ‖Pε(eεk)]‖C1−κ2
+ ε−1‖Qε(eεk)]‖L2

. ε−1‖(eεk)′‖C1−κ2
‖Xε,λ‖C−κ2 + ‖eεk‖Dε + ε−1‖Qε(eεk)]‖L2 . ‖eεk‖Dε(1 + |||ξε|||ε,κ).

Using the bounds on the noise terms, as well as the uniform bound we already established one
thus has, by Besov embedding

sup
ε
‖Πεe

ε
k‖C 1

2−κ
. sup

ε
‖Πεe

ε
k‖C1−κ2

<∞.

Iterating the entire procedure again in L∞ instead of L2, one obtains the required uniform bound
in C1−κ. �

Before concluding, we provide the proof of the stochastic bounds we stated at the beginning
of the section.

Proof of Proposition 6.2. We will prove in order the bounds for ξε, Xε,λ and ξε � Π2
εXε,λ. Even-

tually we address the convergence. Although only in the first case the dimension is allowed to
be both d = 1 and d = 2, we will keep d as a parameter throughout the proof, for the sake of
clarity.

Step 1. First, observe that by Assumption 2.1:

|ξε(x)| ≤ 2ε−
d
2 .

This explains both the L∞ bounds on ξε and the bound in C−
κ
2 (i.e. for ζ = 1). If we show that;

sup
ε∈(0,1/2)

E
[
‖ξε‖C− d2−κ2

]
<∞,

the bound for arbitrary ζ follows by interpolation, since by interpolation, from the definition of
Besov spaces, for any ζ ∈ [0, 1] and α, β ∈ R:

‖ϕ‖Cζα+(1−ζ)β ≤ ‖ϕ‖ζCα‖ϕ‖
1−ζ
Cβ .

Hence let us consider the case ζ = 0. By Besov embedding, the required inequality follows if one
can show that for any p ∈ [2,∞):

sup
ε∈(0,1/2)

E‖ξε‖p
B
− d2−

κ
4

p,p

<∞.

Here in view of Assumption 1.5, and by the discrete Burkholder-Davis-Gundy inequality as well
as Jensen’s inequality one finds that:∫

Td
E[|∆jε

− d
2 sε|p(x)] dx .

∫
Td

( ∑
z∈Zdε

εd|∆jχQε |2(z+x)

)p/2
dx

≤
∫
Td

(∫
Td

dz |Kj(x+z)|2
)p/2

dx . ‖Kj‖pL2 . 2j
dp
2 ,

which is a bound of the required order.
As for Xε,λ, by the elliptic Schauder estimates of Proposition 5.6:

εζ‖PεXε,λ‖C−(1−ζ)+2−κ2 + εζ−2‖QεXε,λ‖C−(1−ζ)−κ2 . ε
ζ‖ξε‖C−(1−ζ)−κ2 ,

so that the required bound follows from the previous calculation. In addition, we need to bound
ε−1‖QεXε,λ‖L∞ . Here:

(39)

‖QεXε,λ‖L∞(Td) = ‖F−1
Td [(1−k)(ε·)(−ϑε + λ)−1(·)ξ̂ε(·)]‖L∞(Td)

≤ ‖F−1
Td [(1−k)(ε·)(−ϑε + λ)−1(·)]‖L1(Td)‖ξε‖L∞(Td)

. ε2‖F−1
Rd [(1−k)(ε·)(−χ̂2 + 1 + ε2λ)−1(ε·)]‖L1(Rd)‖ξε‖L∞(Td)
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where we applied the Poisson summation formula of Lemma B.1. Notice that

‖F−1
Rd [(1−k)(ε·)(−χ̂2 + 1 + ε2λ)−1(ε·)]‖L1(Rd)

≤
∥∥∥∥F−1

Rd

[
1− k(ε·)
1 + ε2λ

+ (1−k)(ε·)
[ 1

−χ̂2 + 1 + ε2λ
− 1

1 + ε2λ

]
(ε·)
]∥∥∥∥

L1(Rd)

≤
∥∥∥∥F−1

Rd

[
1− k(ε·)
1 + ε2λ

]∥∥∥∥
L1(Rd)

+

∥∥∥∥F−1
Rd

[
(1−k)(ε·)

[ 1

−χ̂2 + 1 + ε2λ
− 1

1 + ε2λ

]
(ε·)
]∥∥∥∥

L1(Rd)

The first summand is bounded in L1(Rd) uniformly over ε (with some abuse of notation for the
Dirac δ function). As for the second observe that, for some c > 0:∥∥∥∥F−1

Rd

[
(1−k)(ε·)

[ 1

−χ̂2 + 1 + ε2λ
− 1

1 + ε2λ

]
(ε·)
]∥∥∥∥

L1(Rd)

≤ sup
x∈Rd

(1 + |x|2)
d+1
2

∣∣∣∣ ∫
Rd
e2πι〈x,k〉(1− k(k))

[
1

−χ̂2(k) + 1 + ε2λ
− 1

1 + ε2λ

]
dk

∣∣∣∣
.

∑
0≤|α|≤2d

∫
Rd

∣∣∣∣[Dα

(
1

−χ̂2(k) + 1 + ε2λ
− 1

1 + ε2λ

)]
1{|k|≥c}

∣∣∣∣ dk,
where with the sum we indicate all partial derivatives up to order 2d. Now this term can be
bounded by Lemma 5.1. Let us show this for α = 0 (the other cases are similar), where by a
Taylor expansion:∫

Rd

∣∣∣∣ 1

−χ̂2(k) + 1 + ε2λ
− 1

1 + ε2λ

∣∣∣∣1{|k|≥c} dk .c

(
1

1 + ε2λ

)2 ∫
Rd
χ̂2(k)1{|k|≥c} dk

.
∫
Rd

1

1 + |k|d+1
dk <∞.

Combining the last two observations with (39) leads to

‖QεXε,λ‖L∞(Td) . ε
2‖ξε‖L∞(Td) . ε

2− d
2 ,

which is of the required order.
Step 2. We now consider the bound on ξε � Π2

εXε,λ. In this computation it is important to
note that d = 2. Define ψ0(k1, k2) and ξ̂ε(k) as

ψ0(k1, k2) :=
∑
|i−j|≤1

%i(k1)%j(k2), ξ̂ε(k) := FTdξε(k).

Then

E
[
ξ̂ε(k1)ξ̂ε(k2)

]
=

∫
(T2)2

e−2πι(k1·x1+k2·x2)χQε(x1)(x2) dx1 dx2

=

∫
T2

e−2πι(k1+k2)·x1χ̂Q(εk2) dx1 = χ̂Q(εk1)1{k1+k2=0}.

Hence to compute the renormalization constant observe that

cε,λ = E
[
ξε �Π2

εXε,λ(x)
]

=

∫
(Z2)2

e2πι(k1+k2)·xψ0(k1, k2)
χ̂2(εk2)

−ϑε(k2) + λ
E
[
ξ̂ε(k1)ξ̂ε(k2)

]
dk1 dk2

=

∫
Z2

χ̂2(εk)χ̂Q(εk)

−ϑε(k) + λ
dk.

A similar calculation shows that actually cε = E
[
ξεXε,λ

]
and the asymptotic cε ' log(1/ε)

follows from a manipulation of the sum. We turn our attention to a bound for ‖ξε �Π2
εXε,λ‖C−κ2 .
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As before, for p ≥ 2, consider

(40)

E‖ξε �Xε,λ−cε‖pBαp,p =
∑
j≥−1

2αjpE‖∆j(ξε �Xε,λ−cε1j=−1)‖p
Lp(Td)

=
∑
j≥−1

2αjp
∫
Td

E|∆j(ξε �Xε,λ−cε1j=−1)|p(x) dx.

It is now convenient to introduce the notation:

Kεm(x) = F−1
T2

(
%m(·) χ̂2(ε·)

−ϑε(·) + λ

)
(x).

Then the integrand in (40) can be written as

(41)

E
[
|∆j(ξε �Π2

εXε,λ)(x)− cε1{j=−1}|p
]

= E
[
|∆j(ξε �Π2

εXε,λ)(x)− E∆j(ξε �Π2
εXε,λ)(x)|p

]
= E

∣∣∣∣ ∫
T2

Kj(x− y)
∑
|l−m|≤1

(∫
(T2)2

Kl(y − z1)Kεm(y − z2)ξε(z1) � ξε(z2) dz1 dz2

)
dy

∣∣∣∣p,
where, conveniently:

ξε(z1) � ξε(z2) = ξε(z1)ξε(z2)− E
[
ξε(z1)ξε(z2)

]
.

Now we can write (41) as a discrete stochastic integral and apply Lemma C.1 to obtain

E
∣∣∣∣∫

T2

Kj(x−y)
∑
|l−m|≤1

∑
x1,x2∈Z2

ε∩T2

( ∫
Qε(x1)×Qε(x2)

Kl(y − z1)Km(y−z2)dz1 dz2

)
ξε(x1) � ξε(x2) dy

∣∣∣∣p

.

[ ∑
x1,x2∈Z2

ε∩T2

ε2d

∣∣∣∣ ∫
T2

Kj(x−y)
∑
|l−m|≤1

(
−
∫

Qε(x1)×Qε(x2)

Kl(y − z1)Kεm(y − z2)dz1dz2

)
dy

∣∣∣∣2]p/2

=

[ ∑
x1,x2∈Z2

ε∩T2

ε2d

∣∣∣∣ −
∫

Qε(x1)×Qε(x2)

∫
T2

Kj(x− y)
∑
|l−m|≤1

Kl(y − z1)Km(y − z2) dy dz1 dz2

∣∣∣∣2]p/2

≤
[ ∫

(T2)2

∣∣∣∣ ∫
T2

Kj(x− y)
∑
|l−m|≤1

Kl(y − z1)Kεm(y − z2) dy

∣∣∣∣2 dz1 dz2

]p/2
,

where the last step is an application of Jensen’s inequality. Now, via Parseval’s Theorem, the
latter is bounded by[ ∫

(Z2)2

∣∣∣∣ ∫
T2

Kj(x− y)
∑
|l−m|≤1

e2πιk1·y%l(k1)e2πιk2·y%m(k2)
χ̂2(εk2)

−ϑε(k2) + λ
dy

∣∣∣∣2 dk1 dk2

]p/2

=

[ ∫
(Z2)2

∣∣∣∣e2πι(k1+k2)·x%j(k1 + k2)ψ0(k1, k2)
χ̂2(εk2)

−ϑε(k2) + λ

∣∣∣∣2 dk1 dk2

]p/2
.

Now by Lemma 5.1:
χ̂2(εk)

−ϑε(k) + λ
.

χ̂2(εk)

|k|2 + λ
1{|k.ε−1|} +

|k|−3

λ
1{|k|&ε−1} .

1

λ+ |k|2
.

Finally, taking into account the supports of the functions,[ ∫
(Z2)2

∣∣∣∣%j(k1 + k2)ψ0(k1, k2)
1

1 + |k2|2

∣∣∣∣2 dk1 dk2

]p/2
.
[
2j2d2−4j

]p/2
≤ 1,

which provides a bound of the required order. With this we have concluded the proof of the
regularity bound. We are left with a discussion of the convergence.
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Step 3. What we established so far implies tightness of the following sequences of random
variables in their respective spaces:

ξε ∈ C−
d
2
−κ, PεXε,λ ∈ C1−κ, ξε �Π2

εXε,λ ∈ C−κ.

The next step is to show that the limiting points of ξε and ξε�Π2
εXε,λ are unique in distribution. In

particular, in view of Proposition 5.6, this would imply weak convergence also of PεXε,λ. Once
we have proven weak convergence the required result concerning the almost sure convergence
follows by Skorohod representation.

Convergence of ξε to space time white noise ξ is an instance of central limit theorem (notice
the normalization of variance in Assumption 1.5). We therefore focus our attention on the more
involved Wick product ξε �Xε,λ. For fixed ϕ ∈ S(T2)

〈ϕ, ξε �Xε,λ〉

=

∫
T2

ϕ(y)
∑
|l−m|≤1

∑
x1,x2∈Z2

ε∩T2

( ∫
Qε(x1)×Qε(x2)

Kl(y − z1)Kεm(y−z2) dz1 dz2

)
ξε(x1) � ξε(x2) dy

=
∑

x1,x2∈Z2
ε

〈
ϕ(·),

∑
|l−m|≤1

ΠεKl(· − x1)ΠεKεm(·−x2)
〉
ξε(x1) � ξε(x2).

Consider a map Lε :
(
Z2
ε

)2 → R defined by

Lε(x1, x2) := 〈ϕ(·),
∑
|l−m|≤1

ΠQ
ε Kl(· − x1)ΠQ

ε Km(·−x2)〉1{(x1,x2)∈T2×T2}.

This definition naturally extends to ε = 0, where L maps (R2)2 to R. Our goal is to show that

(42)
∑

(x1,x2)∈(Z2
ε)

2

Lε(x1, x2)ξε(x1) � ξε(x2)→
∫

(R2)2
L(x1, x2)ξ( dx1) � ξ( dx2),

where convergence holds in distribution and the limit is interpreted as an iterated stochastic
integral in the second Wiener-Itô chaos. It is sufficient to verify the assumptions of Lemma C.2.
That is, we have to show that there exists a g ∈ L2((R2)2) such that:

sup
ε∈(0,1/2)

|1(ε−1T2)2F(Z2
ε)

2Lε| ≤ g, lim
ε→0
‖1(ε−1T2)2F(εZ2)2Lε −F(R2)2L‖L2((R2)2) = 0

For this purpose we calculate

1(ε−1T2)2F(εZ2)2Lε(k1, k2)

= 1(ε−1T2)2(k1, k2)

∫
(Z2
ε∩T2)2

e2πι(k1·x1+k2·x2)〈ϕ(·),
∑
|l−m|≤1

ΠQ
ε Kl(· − x1)ΠQ

ε Km(·−x2)〉dx1 dx2

= 1(ε−1T2)2(k1, k2)

∫
(T2)2

e2πι(k1·x1+k2·x2)〈ϕ(·),
∑
|l−m|≤1

Kl(· − x1)Km(·−x2)〉 dx1 dx2

= 1(ε−1T2)2(k1, k2)

∫
T2

ϕ(y)e2πι(k1+k2)·y
∑
|l−m|≤1

%l(−k1)%m(−k2)
χ̂2(−εk2)

−ϑε(−k2) + λ
dy

= 1(ε−1T2)2(k1, k2)(FT2ϕ)(k1 + k2)
∑
|l−m|≤1

%l(k1)%m(k2)
χ̂2(εk2)

−ϑε(k2) + λ
,

so that the required assumptions are naturally satisfied. Since ϕ is smooth, the latter term is
bounded in L2, uniformly over ε. In particular (42) follows. Hence the distribution of any limit
point of 〈ϕ, ξε�Π2

εXε,λ〉 is uniquely characterized and since ϕ is arbitrary this implies convergence
in distribution of ξε �Π2

εXε,λ. �
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Appendix A. The SLFV in a random environment

In this section we provide a rigorous construction of the spatial Λ-Fleming-Viot process (SLFV)
in a random environment. We work under the following assumptions.

Assumption A.1. Let (Ω,F ,P) be a probability space. Fix ε ∈ (0, 1/2) and u ∈ (0, 1), d = 1, 2
and w0 : Td → [0, 1] a measurable map and let sε : Ω× Td → (−1, 1) be a measurable function.

The natural state space of the spatial SLFV process is:

M = {w : Td → [0, 1], w measurable},
which is a metric space when endowed with the distance dM (u,w) = supx∈Td |u(x)−w(x)|. Then
under the assumption above, for x ∈ Td, p ∈ {a,A} and any function w : Td → [0, 1] define the
operator Θp

x : M →M by

Θp
xw(y) = w(y)1{Bcε(x)}(y)+(u1{p=a}+(1−u)w(y))1{Bε(x)}(y)

= w(y)+u(1{p=a}−w(y))1{Bε(x)}(y).

In the discussion below, let B(E) be the Borel sigma-algebra associated to some metric space E.
We say that a probability measure Pω on (E,B(E)) indexed by ω ∈ Ω is a Markov kernel, if for
any A ∈ B(E) the map ω 7→ Pω(A) is measurable. Then one can build the semidirect product
measure PnPω on Ω×E (with the product sigma-algebra), characterized, for A ∈ F , B ∈ B(E),
by:

P n Pω(A×B) =

∫
A
Pω(B)P( dω).

In the definition below we write:

s+(x) = max{s(x), 0}, s−(x) = max{−s(x), 0}.

Lemma A.2. Under Assumption A.1, fix ω ∈ Ω. There exists a unique Markov jump process
t 7→ w(t) in D([0,∞);M) started in w(0) = w0, associated to the generator

L(ε, sε(ω), u) : Cb(M ;R)→ Cb(M ;R),

defined by

L(f)(w) =

∫
M

(f(w′)− f(w))µ(w, dw′), f ∈ Cb(M ;R),

where the transition function µ : M × B(M)→ R (depending on sε(ω), u, ε) is defined by:

µ(w, dw′) = 0 unless there exist x ∈ Td, p ∈ {a,A} such that w′ = Θp
xw.

And if w′ = Θp
xw for some x ∈ Td, p ∈ {a,A}:

µ(w, dw′) =

{
(1−|sε(ω, x)|)

[
Πεw1{p=a}+(1−Πεw)1{p=A}

]
(x)

+ (sε)−(ω, x)

[(
Πεw

)2
1{p=a}+

(
1−
(
Πεw

)2)
1{p=A}

]
(x)

+ (sε)+(ω, x)

[
Πεw(2−Πεw)1{p=a}+(1−Πεw)21{p=A}

]
(x)

}
dx.

The law Pω of w in D([0,∞);M) is a Markov kernel and induces the semidirect product measure
P n Pω on Ω× D([0,∞);M).

Proof. Note that µ defined as above is a Markov kernel onM×B(M) (to be precise, here we have
to observe that for fixed w the set {Θp

xw, x ∈ Td, p ∈ {a,A}} is closed and hence measurable
in M). Hence, the Markov process is constructed following [23, Section 4.2]. In addition, for
f ∈ Cb(M ;R) measurable and bounded the map ω 7→

∫
M f(w′)µω(w, dw′) is measurable (we

made explicit the dependence of µ on ω). This implies, e.g. by [23, Equation 4.2.8], that the
map ω 7→ Pω(A) is measurable, for A ∈ B(D([0,∞);M)). So the proof is complete. �
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Lemma A.3. Under Assumption A.1 fix ω ∈ Ω and let w be the Markov process as in the
previous result. For any ϕ ∈ L1(Td) the process t 7→ 〈w(t), ϕ〉 satisfies the martingale problem of
Lemma 1.3.

Proof. In the discussion below we omit the dependence of sε(ω) on ε and ω, since such dependence
is not relevant here. We will apply the generator to functions of the form Fϕ(w) = F (〈w,ϕ〉),
with F ∈ C(R;R), ϕ ∈ L1(Td). For simplicity we divide the operator L = L(ε, s, u) in three
parts:

L(Fϕ)(w) := Lneu(Fϕ)(w) + Lsel(Fϕ)(w)

:= Lneu(Fϕ)(w) + Lsel
< (Fϕ)(w) + Lsel

> (Fϕ)(w)

(the first is the neutral part, the second two are the selective parts of the operator), where

Lneu(Fϕ)(w) =

∫
Td

(1−|s(x)|)
[
Πεw[Fϕ(Θa

xw)−Fϕ(w)]+(1−Πεw)[Fϕ(ΘA
xw)−Fϕ(w)]

]
(x) dx

Lsel
> (Fϕ)(w) =

∫
Td

s−(x)

[(
Πεw

)2
[Fϕ(Θa

xw)−Fϕ(w)]+
(
1−
(
Πεw

)2)
[Fϕ(ΘA

xw)−Fϕ(w)]

]
(x) dx

Lsel
< (Fϕ)(w) =

∫
Td

s+(x)

[
Πεw(2−Πεw)[Fϕ(Θa

xw)−Fϕ(w)]+(1−Πεw)2[Fϕ(ΘA
xw)−Fϕ(w)]

]
(x) dx

Now, in the special case of F = Id, the neutral part of the generator takes form

Lneu(Idϕ)(w) = uεd
∫
Td

(1−|s(x)|)[(Πεw)(Πεϕ)−Πε(wϕ)](x) dx,

Analogously, the selective part can be written as

Lsel(Idϕ)(w) = uεd
∫
Td
s(x)[Πε(wϕ)−

(
Πεw

)2
Πεϕ](x) + 2s+(x)[ΠεwΠεϕ−Πε(wϕ)](x) dx.

Adding those two we conclude that

L(Idϕ)(w) = uεd
∫
Td

[(Πεw)(Πεϕ)−Πε(wϕ)](x) + s(x)[(Πεw)(Πεϕ)− (Πεw)2Πεϕ](x) dx.

This justifies the drift in the required decomposition. To obtain the predictable quadratic vari-
ation of the martingale make use of Dynkin’s formula, that is

〈M ε(ϕ)〉t =

∫ t

0
L(Id2

ϕ)− 2
(
IdϕL(Idϕ)

)
(Xε

r ) dr.

Once again, it is natural to treat the terms involving Lneu and Lsel separately. For the neutral
term:(

Lneu(Id2
ϕ)− 2FϕLneu(Idϕ)

)
(w)

= u2ε2d

∫
Td

(1−|s(x)|)
[
Πεw

(
Πεϕ−Πε(wϕ)

)2
+
(
1−Πεw

)(
Πε(wϕ)

)2]
(x) dx,

which can be written as

u2ε2d

∫
Td

(1−|s(x)|)
[
Πεw

[(
Πεϕ

)2 − 2Πεϕ(x)Πε(wϕ)
]

+
[
Πε(wϕ)

]2]
(x) dx.

Analogous calculations for Lsel
< lead to(

Lsel
< (Id2

ϕ)− 2IdϕLsel
< Idϕ

)
(w) =

= u2ε2d

∫
Td
s−(x)

[
(Πεw)2

[
(Πεϕ)2 − 2ΠεϕΠε(wϕ)

]
+
[
Πε(wϕ)

]2]
(x) dx.
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Whereas for Lsel
> they lead to(

Lsel
> (Id2

ϕ)− 2IdϕLsel
> Idϕ

)
(w)

= u2ε2d

∫
Td
s+(x)

[
(Πεw)(2−Πεw)

(
Πεϕ−

(
Πε(wϕ)

)2
+
(
1−Πεw

)2(
Πεw

)2]
(x) dx

= u2ε2d

∫
Td
s+(x)

[
(Πεw)(2−Πεw)

[(
Πεϕ

)2−2ΠεϕΠε(wϕ)
]
+
[
Πε(wϕ

)]2
(x)
]

dx.

Summing neutral and selective terms one obtains

u2ε2d〈Πεw, (1−|s|)
[(

Πεϕ
)2−2ΠεϕΠε(wϕ)

]
〉+〈
(
Πε(wϕ)

)2
, (1−|s|)〉

+ uε2d〈(Πεw)2, s−

[
(Πεϕ)2 − 2(Πεϕ)

(
Πε(wϕ)

)]
+ 〈
(
Πε(wϕ)

)2
, s−〉

+ u2ε2d〈Πεw, s+

[
(2−Πεw)

(
(Πεϕ)2−2(Πεϕ)

(
Πε(wϕ)

))]
〉+〈
(
Πε(wϕ)

)2
, s+〉,

which can be written in the form from the statement of the Lemma.
�

Appendix B. Some analytic results

In this appendix we recall some of the analytic theory we require. First we concentrate on
special properties of Besov spaces and the regularity of characteristic functions. Later we will
address some relevant points in paracontrolled calculus.

B.1. Besov spaces & characteristic functions. Let us begin by stating the Poisson summa-
tion formula (a proof is left to the reader, or can be found in many textbooks and web pages).

Lemma B.1. For ϕ ∈ S(Rd) it holds that:

F−1
Td ϕ(x) =

∑
z∈Zd
F−1
Rd ϕ(x+ z).

In particular, this implies for ϕ ∈ S(Rd) the bound:

‖F−1
Td ϕ‖L1(Td) ≤ ‖F−1

Rd ϕ‖L1(Rd).

Recall that the Besov spaces Bα
p,q(Td) are defined via a dyadic partition of the unity {%j}j≥−1

such that for j ≥ 0, %j = %(2j ·) for a smooth function % with compact support in an annulus.

Proposition B.2 (Besov embeddings). For any 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞ the
space Bα

p1,q1 is continuously embedded in Bα−d(1/p1−1/p2)
p2,q2 . In other words, there exists a constant

C > 0 such that:

‖ϕ‖
B
α−d( 1

p1
− 1
p2

)

p2,q2

≤ C‖ϕ‖Bαp1,q1 .

In addition, for α′ < α the embedding Bα
p2,q2 ⊆ B

α′
p1,q1 is compact.

In certain cases, it will be convenient to use the following alternative characterization of certain
Besov spaces.

Proposition B.3 (Sobolev-Slobodeckij norm). For every α ∈ R+ \ N and for every p ∈ [1,∞)
define the the Sobolev-Slobodeckij norm for ϕ ∈ S ′(Td) as:

‖ϕ‖Wα
p

:= ‖ϕ‖Lp +
∑
|m|=bαc

(∫
Td×Td

|Dmϕ(x)−Dmϕ(y)|p

|x− y|d+(α−bαc)p dx dy

)1/p

∈ [0,∞].

There exist constants a pair of constants c(p), C(p) > 0 such that for ϕ ∈ S ′(Td)
c‖ϕ‖Bαp,p ≤ ‖ϕ‖Wα

p
≤ C‖ϕ‖Bαp,p .
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For a proof consult e.g. [51] Theorem 2.5.7 and the discussion in Section 2.2.2. The next
result states the regularizing properties of convolutions.

Lemma B.4. For p, q, r ∈ [1,∞] satisfying 1
r = 1

p+1
q−1 and for any ϕ,ψ ∈ S ′(Td):.

‖ϕ ∗ ψ‖
Cα+βr

. ‖f‖Cαp ‖g‖Cβq .

Proof. By Young convolution inequality

(43) ‖∆i(f ∗ g)‖Lr = ‖∆if ∗∆ig‖Lr . ‖∆if‖Lp‖∆ig‖Lq ,

where ∆i is associated with a dyadic partition of the unity different from the one we use for
most of the proofs. Namely we require that it satisfies {%j}j≥−1 such that %j%j = %j . Then the
bound follows immediately, since the Besov norms associated to different dyadic partitions are
equivalent (cf. [3, Remark 2.17]). �

The following lemma is a special case of results obtained by [47]. The proof is included for
completeness.

Lemma B.5. Fix ζ ∈ [0, 1
p). Then, for p ∈ [1,∞):

sup
ε∈(0,1/2)

ε
ζ+d− d

p ‖χε‖W ζ
p
<∞.

Proof. We shall make use of the characterization of fractional Sobolev space in terms of Sobolev-
Slobodeckij norm. A direct computation shows that

‖χε‖W ζ
p

= ‖χε‖Lp +

(∫
Td×Td

ε−dp
|1Bε(x)− 1Bε(y)|p

|x−y|d+ζp
dxdy

)1/p

≤ 1 +

(
2

∫
Bε

∫
Td\Bε

ε−dp
|1Bε(x)− 1Bε(y)|p

|x−y|d+ζp
dxdy

)1/p

.

Now let dε(x) be the Euclidean distance of x from the boundary ∂Bε and let Bdε(x)(y) be the
ball of radius dε(x) about y. Then the previous integral can be estimated by:(∫

Bε

∫
Td\Bε

ε−dp
|1Bε(x)− 1Bε(y)|p

|x−y|d+ζp
dxdy

)1/p

≤
(∫

Bε

∫
Td\Bdε(y)(y)

ε−dp
1

|x− y|d+ζp
dxdy

)1/p

=

(∫
Bε

∫
Td\Bdε(y)(0)

ε−dp
1

|x|d+ζp
dxdy

)1/p

.

(∫
Bε

ε−dpdε(y)−ζpdy

)1/p

.

(∫ cε

0
ε−dp(cε− r)−ζprd−1dr

) 1
p

. ε−d
(
ε−ζp+d

)1/p
≤ ε−d−ζ+d/p

�

Corollary B.6. For ζ ∈ [0, 1), p ∈ [1,∞] and α ∈ R

sup
ε∈(0,1/2)

εζ‖χε ∗ ϕ‖Cα+ζp
. ‖ϕ‖Cαp .

Proof. This is now a direct consequence of Lemmata B.4 and B.5 (the latter with p = 1). �

The rest of this subsection is devoted to the proof of Lemma 5.1.

Proof of Lemma 5.1. Let us start with the term involving the gradient. We have that for i =
1, . . . , d:

(Dχ̂)i(0) = −2πι −
∫
B1(0)

xie
−2πι〈k,x〉 dx

∣∣∣
k=0

= 0.
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For the term involving the Hessian, we observe that an analogous computation for i 6= j shows
that (D2χ̂)i,j(0) = 0 . If i = j we find that

(D2χ̂)i,i(0) = −(2π)2 −
∫
B1(0)

dx x2
i e
−2πι〈k,x〉

∣∣∣
k=0

=: −(2π)2ν0,

with the value of ν0 as in the statement. The two-sided inequality follows by a Taylor approxi-
mation. We are left with a bound on the decay of χ̂:∣∣∣ dn

dxi1 . . . dxin
χ̂B(k)

∣∣∣ .α (1+|k|)−
d+1
2 .

For this purpose let Jν(·) be the Bessel function of the first kind with parameter ν, that is

Jν(k) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(
k

2

)2m+ν

.

The Fourier transform of χQ is given, for some c, C > 0, by

χ̂B(k) = c(d)

∫ π

0
dt sind (t)e−2πι|k| cos (t)/4 = C|k|−d/2Jd/2(π|k|/2)(44)

Since J 1
2
(k) =

√
2
πk sin k, the bound for d = 1 is immediate. For d = 2, we make use of an

asymptotic bound for Bessel functions:

sup
%≥1

%−1/2|Jν(%)| < +∞.

We provide a proof of this bound in the next Lemma. The bound for the derivatives then follows
from (44), the asymptotic result for Bessel functions, and the following pair of identities

∂xJn(x) =
1

2
(Jn−1(x)+Jn+1(x)), ∀n ∈ Z,

J−n(·) = (−1)nJn(·) ∀n ∈ N0.

�

The following result is well-known (see e.g. [53], where many deeper results are presented).
For completeness we provide a proof that satisfies all our purposes.

Lemma B.7. Fix ν ∈ R. Then

sup
%≥1

%−1/2|Jν(%)| < +∞,

Proof. Through (44) and by changing variables x = cos(t) we rewrite the Bessel function as∫ 1

−1
dx (1−x2)

d−1
2 eι%x = 2Re

(∫ 1

0
dx (1−x2)

d−1
2 eι%x

)
.

A change variables x = 1−u2. yields

ei%
∫ 1

0
du
(
u2(2−u2)

) d−1
2 e−ι%u

2
u =

ei%

%
d+1
2

∫ √%
0

dw
(
w2(2−w

2

%
)
) d−1

2 e−ιw
2
w

Observe that in order to obtain the desired bound it is now sufficient to show that the integral
terms is bounded uniformly in ρ. After another change of variable w = e−ι

π
4 z we obtain∫ e

ιπ
4
√
%

0
dz
(
−ιz2(2+ιz2/%)

) d−1
2 e−z

2
z

=

∫ √%
0

dz
(
−ιz2(2+ιz2/%)

) d−1
2 e−z

2
z +

∫ π/4

0
dϕ
(
−ι%e2ιϕ(2+ιe2ιϕ)

) d−1
2 e−%e

2ιϕ
%e2ιϕ
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The first integral can be trivially bounded uniformly over % while the second one is tends to 0
as ρ tends to infinity since the exponential term dominates all the others. �

B.2. Paraproducts & commutator estimates. This section is devoted to products of distri-
butions and commutator estimates, starting with the decomposition in paraproducts (through
the symbol 4) and resonant products (�). For ϕ,ψ ∈ S ′(Td) set

Siϕ :=
i−1∑
j=−1

∆jϕ, ϕ4 ψ :=
∑
i≥−1

Si−1ϕ∆iψ, ϕ� ψ :=
∑
|i−j|≤1

∆jϕ∆iψ,

where the latter sum might not be well defined. Then, an a priori ill-posed product of ϕ and ψ
can be written as

ϕ · ψ = ϕ4 ψ + ϕ� ψ + ϕ5 ψ.

The following estimates are classical, see e.g. [3, Lemmata 2.82 and 2.85] and guarantee that the
product is actually well-defined if the regularities α and β of ϕ and ψ satisfy α+ β > 0.

Lemma B.8. Let α, β ∈ R and fix p, q, r ∈ [1,∞] such that 1/r = 1/p+1/q. For ϕ,ψ ∈ S ′(Td)

‖ϕ4 ψ‖Cαr . ‖ϕ‖Lp‖ψ‖Cαq ,
‖ϕ4 ψ‖Cα+βr

. ‖ϕ‖Cβp ‖ψ‖Cαq , if β < 0,

‖ϕ� ψ‖Cα+βr
. ‖ϕ‖Cβp ‖ψ‖Cαq if α+β > 0.

The rest of this subsection is deals with the following commutators.

Definition B.9. For distributions ϕ,ψ, σ ∈ S ′(Td) we define the (a-priori ill-posed) commutators

C�(ϕ,ψ, σ) := ϕ� (ψ 4 σ)− ψ(ϕ� σ),

CΠ
ε (ϕ,ψ) := Π2

ε(ϕ4 ψ)− ϕ4Π2
εψ,

Cε,λ(ϕ,ψ) := (−Aε + λ)−1(ϕ4 ψ)− ϕ4 (−Aε + λ)−1ψ.

The first commutator estimate is crucial, but by now well-known.

Lemma B.10 ([27], Lemma 14). For ϕ,ψ, σ ∈ S ′(Td), α, β, γ ∈ R with α + β + γ > 0 and
p ∈ [1,∞]:

‖C�(ϕ,ψ, σ)‖Cα+γp
. ‖ϕ‖Cα‖ψ‖Cβp ‖σ‖Cγ .

We pass to the second estimate. Recall the operators Pε,Qε as in Definition 5.3.

Lemma B.11. For ϕ,ψ ∈ S ′(Td) and α ∈ R, β > 0, p ∈ [1,∞] it holds for every δ ∈ [0, β ∧ 1):

‖PεCΠ
ε (ϕ,ψ)‖Cα+δp

. ‖ϕ‖Cβp ‖ψ‖Cα , ‖QεCΠ
ε (ϕ,ψ)‖Cαp . ε

δ‖ϕ‖Cβp ‖ψ‖Cα .

Proof. Note that for any i ≥ 0 there exists an annulus A (that is a set of the form {k ∈ Rd | r ≤
|k| ≤ R} for some 0 < r < R) such that the Fourier transform of

Π2
ε[Si−1ϕ∆iψ]− Si−1ϕΠ2

ε∆iϕ

is contained in 2iA. It is therefore sufficient to show that∥∥Π2
ε[Si−1ϕ∆iψ]− Si−1ϕΠ2

ε∆iϕ
∥∥
Lp
. εδ‖ϕ‖Cβp ‖∆iψ‖L∞ ,(45)

since this implies the required bound by estimating εδ . 2−δi for i such that Pε∆i 6= 0. To obtain
(45), recall the Sobolev-Slobodeckij characterization of fractional spaces of Proposition B.3, so
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that for δ ∈ [0, 1)

‖Π2
ε[Si−1ϕ∆iψ]− Si−1ϕΠ2

ε∆iϕ‖∞ ≤
(∫

Td

∣∣∣ −∫
Bε(x)

[Si−1ϕ(y)−Si−1ϕ(x)]∆iψ(y) dy
∣∣∣p dx

)1/p

. εδ
(∫

Td

∣∣∣ −∫
Bε(x)

[Si−1ϕ(y)−Si−1ϕ(x)]

|y − x|δ
∆iψ(y) dy

∣∣∣p dx

)1/p

. εδ
(∫

Td

∫
Bε(x)

|Si−1ϕ(y)−Si−1ϕ(x)|p

|y − x|d+δp
dy dx

)1/p

‖∆iψ‖∞ . εδ‖Si−1ϕ‖Cβp 2−αi‖ψ‖Cα ,

where the first inequality follows by Jensen’s inequality and and we have used the embedding
Bβ
p,∞ ⊂ Bδ

p,p. Now the result follows since:

‖Si−1ϕ‖Cβp . ‖ϕ‖Cβp .

This concludes the proof. �

Lemma B.12. For ϕ,ψ ∈ S ′(Td) and α ∈ (0, 2), β ∈ R and p ∈ [1,∞]

‖PεCε,λ(ϕ,ψ)‖Cβ+2
p

+ ε−2‖QεCε,λ(ϕ,ψ)‖Cβp . ‖ϕ‖Cαp ‖ψ‖Cβ

Proof. By the elliptic Schauder estimates in Proposition 5.6, it is sufficient to prove that

‖(−Aε + λ)Cε,λ(ϕ,ψ)‖Cβp . ‖ϕ‖Cαp ‖ψ‖Cβ .

In turn to obtain this bound, since the quantities below are supported in an annulus 2iA, it
suffices to estimate for i ≥ 0

(46) ‖Si−1ϕ∆iψ − (−Aε + λ)[Si−1ϕ(−Aε + λ)−1∆iψ]‖Lp . 2−iβ‖φ‖Cαp ‖ψ‖Cβ .

Let Bε(ϕ,ψ) be defined as

Bε(ϕ,ψ)(x) = ε−2 −
∫
Bε(x)

dy −
∫
Bε(y)

dz (ϕ(z)−ϕ(x))(ψ(z)−ψ(x)).

Then Aε can be decomposed as

Aε(ϕ · ψ) = Aε(ϕ) · ψ+ϕ · Aε(ψ)+Bε(ϕ,ψ),

Hence proving Equation (46) reduces to finding a bound for

‖(−Aε + λ)[Si−1ϕ](−Aε + λ)−1[∆iψ]‖Lp + ‖Bε(Si−1ϕ, (−Aε + λ)−1∆iψ)‖Lp .
Starting with the first term, one has:

‖(−Aε + λ)[Si−1ϕ](−Aε + λ)−1[∆iψ]‖Lp . ‖(−Aε + λ)[Si−1ϕ]‖Lp‖(−Aε + λ)−1[∆iψ]‖L∞ .

If 2−i ≥ ε, since α < 2, one can estimate via Proposition 5.2:

‖(−Aε + λ)[Si−1ϕ]‖Lp ≤
i−1∑
j=−1

‖(−Aε + λ)[∆jϕ]‖Lp .
i−1∑
j=−1

2j(2−α)‖ϕ‖Cαp . 2i(2−α)‖ϕ‖Cαp .

If 2−i ≤ ε choose i(ε) such that 2−i(ε) ' ε (uniformly over ε). Then following the previous
calculations and using that α > 0:

‖(−Aε + λ)[Si−1ϕ]‖Lp ≤
i(ε)−1∑
j=−1

‖(−Aε + λ)[∆jϕ]‖Lp +

i−1∑
j=i(ε)

‖(−Aε + λ)[∆jϕ]‖Lp

. ε−(2−α)‖ϕ‖Cαp .
By Proposition 5.7 moreover

‖(−Aε + λ)−1∆iψ‖ .
(

2−2i1{2−i≥ε} + ε21{2−i≤ε}

)
2−βi‖ψ‖Cβ ,
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which provides a bound of the required order for (46). Finally, we have to bound the term
containing Bε. If 2−i ≥ ε

‖∇Si−1ϕ‖Lp‖∇(−Aε + λ)−1∆iψ‖L∞ . 2i‖Si−1ϕ‖Lp2−(1+β)i‖ψ‖Cβ . 2−βi‖ϕ‖Cαp ‖ψ‖Cβ ,

whereas if 2−i ≤ ε
‖Bε(Si−1ϕ, (−Aε + λ)−1∆iψ)‖Lp . ε−2‖Si−1ϕ‖Lp‖(−Aε + λ)−1∆iψ‖L∞

. 2−βi‖ϕ‖Lp‖ψ‖Cβ .

This bound is again of the correct order for (46) and hence the proof is concluded.
�

Appendix C. Multiple discrete stochastic integrals

This appendix is devoted to results on discrete multiple stochastic integrals. The discussion
is based on approach of [39, Section 5], which in turn based on [10]. The following lemma (see
also [10, Theorem 2.3]) provides an estimate for the discrete multiple stochastic integrals. The
definition of such integrals, in particular the definition of ξ(z1) � · · · � (zn), can be found at the
beginning of Section 5 in [39].

Lemma C.1. [[39], Lemma 5.1] Let ξε satisfy Assumption 1.5. Fix n ≥ 1. For f ∈ L2
(
(Zdε)n

)
define the discrete stochastic integral by

Jnf :=
∑

z1,...,zn∈Zdε

ε−dnf(z1, . . . , zn)ξ(z1) � · · · � ξ(zn).

Then for p ≥ 2 [
E
∣∣Jnf ∣∣p] 1

p
. ‖f‖L2((Zdε)n).

The next lemma provides a convergence criterion for discrete multiple stochastic integrals
to continuous multiple stochastic integrals. In the following FZdε indicates the natural discrete
Fourier transform on Zdε . The definition can be found in the glossary of [39].

Lemma C.2. [[39], Lemma 5.4] Let ξε satisfy Assumption 1.5. Fix n ≥ 1. Fix a sequence
fε ∈ L2((Zdε)n). Assume that there exists a function g ∈ L2

(
(Rd)n

)
such that

sup
ε∈(0,1/2)

|1(ε−1Td)nF(Zdε)nfε| ≤ g,

and there exists an f ∈ L2
(
(Rd)n

)
such that

lim
ε→0
‖1(ε−1Td)nF(Zdε)nfε −F(Rd)nf‖L2((R2)n) = 0.

Then, if ξ(dz1) � . . . ξ(dzk) denotes the Wiener-Itô integral against the Gaussian stochastic mea-
sure induced by a white noise ξ on Rd, the following convergence holds in distribution

lim
ε→0
Jnfε =

∫
(Rd)n

f(z1, . . . , zk)ξ(dz1) � · · · � ξ(dzk).

References

[1] D. Aldous. Stopping times and tightness. Ann. Probability, 6(2):335–340, 1978.
[2] R. Allez and K. Chouk. The continuous Anderson hamiltonian in dimension two. arXiv preprint

arXiv:1511.02718, 2015.
[3] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations,

volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer, Heidelberg, 2011.

[4] N. H. Barton, F. Depaulis, and A. Etheridge. Neutral evolution in spatially continuous populations. Theor.
Pop. Biol., 61:31–48, 2002.



50 ALEKSANDER KLIMEK AND TOMMASO CORNELIS ROSATI

[5] N. H. Barton, A. M. Etheridge, and A. Véber. A new model for evolution in a spatial continuum. Electron.
J. Probab., 15:162–216, 2010.

[6] N. H. Barton, A. M. Etheridge, and A. Véber. Modelling evolution in a spatial continuum. J. Stat. Mech.,
page PO1002, 2013.

[7] N. Biswas, A. Etheridge, and A. Klimek. The spatial Lambda-Fleming-Viot process with fluctuating selection.
ArXiv e-prints, February 2018.

[8] S. Cambronero, B. Rider, and J. Ramirez. On the shape of the ground state eigenvalue density of a random
hill’s equation. Communications on Pure and Applied Mathematics, 59(7):935–976, 2006.

[9] G. Cannizzaro, P. K. Friz, and P. Gassiat. Malliavin calculus for regularity structures: The case of gPAM.
J. Funct. Anal., 272(1):363–419, 2017.

[10] F. Caravenna, R. Sun, and N. Zygouras. Polynomial chaos and scaling limits of disordered systems. J. Eur.
Math. Soc. (JEMS), 19(1):1–65, 2017.

[11] R. A. Carmona and S. A. Molchanov. Stationary parabolic Anderson model and intermittency. Probab.
Theory Related Fields, 102(4):433–453, 1995.

[12] J. Chetwynd-Diggle and A. Etheridge. Superbrownian motion and the spatial lambda-fleming-viot process.
Electron. J. Probab., 23:36 pp., 2018.

[13] J. Chetwynd-Diggle and A. Klimek. Rare mutations in the spatial Lambda-Fleming-Viot model in a fluctu-
ating environment and SuperBrownian Motion. arXiv e-prints, January 2019.

[14] K. Chouk, J. Gairing, and N. Perkowski. An invariance principle for the two-dimensional parabolic anderson
model with small potential. Stochastics and Partial Differential Equations: Analysis and Computations,
5(4):520–558, Dec 2017.

[15] K. Chouk and W. van Zuijlen. Asympotics of the eigenvalues of the anderson hamiltonian with white noise
potential in two dimensions. in preparation, 2019+.

[16] J. Cox and E. Perkins. Rescaling the spatial lambda fleming-viot process and convergence to super-brownian
motion. arXiv preprint arXiv:1909.03277, 2019.

[17] J. T. Cox, R. Durrett, and E. A. Perkins. Rescaled voter models converge to super-Brownian motion. Ann.
Probab., 28(1):185–234, 2000.

[18] D. A. Dawson and E. Perkins. Superprocesses at Saint-Flour. Probability at Saint-Flour. Springer, Heidelberg,
2012.

[19] D. Erhard and M. Hairer. Discretisation of regularity structures. Ann. Inst. Henri Poincaré Probab. Stat.,
55(4):2209–2248, 2019.

[20] A. M. Etheridge. An introduction to superprocesses, volume 20 of University Lecture Series. American Math-
ematical Society, Providence, RI, 2000.

[21] A. M. Etheridge. Drift, draft and structure: some mathematical models of evolution. Banach Center Publ.,
80:121–144, 2008.

[22] A. M. Etheridge, A. Véber, and F. Yu. Rescaling limits of the spatial Lambda-Fleming-Viot process with
selection. arXiv:1406.5884, 2018.

[23] S.N. Ethier and T.G. Kurtz. Markov processes: characterization and convergence. Wiley series in probability
and mathematical statistics. Probability and mathematical statistics. Wiley, 1986.

[24] R. Forien and S. Penington. A central limit theorem for the spatial lambda -fleming-viot process with selection.
Electronic Journal of Probability, 22, 2017.

[25] M. Fukushima and S. Nakao. On spectra of the Schrödinger operator with a white Gaussian noise potential.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 37(3):267–274, 1976/77.

[26] M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and singular PDEs. Forum Math.
Pi, 3:e6, 75, 2015.

[27] M. Gubinelli and N. Perkowski. Lectures on singular stochastic PDEs. arXiv e-prints, page arXiv:1502.00157,
Jan 2015.

[28] M. Gubinelli and N. Perkowski. KPZ reloaded. Comm. Math. Phys., 349(1):165–269, 2017.
[29] M. Hairer. A theory of regularity structures. Invent. Math., 198(2):269–504, 2014.
[30] P. Hedrick. Genetic polymorphism in heterogeneous environments: the age of genomics. Annu. Rev. Ecol.

Evol. Syst., 37:67–93, 2006.
[31] D. Henry. Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin-New York, 1981.
[32] A. Jakubowski. On the skorokhod topology. In Annales de l’IHP Probabilités et statistiques, volume 22, pages

263–285, 1986.
[33] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

Reprint of the 1980 edition.
[34] J. Kerr and L. Packer. Habitat heterogeneity as a determinant of mammal species richness in high-energy

regions. Nature, 385(6613):252, 1997.
[35] M. Kimura. Stepping stone model of population. Ann. Rep. Nat. Inst. Genetics Japan, 3:62–63, 1953.



THE SPATIAL Λ-FLEMING-VIOT PROCESS IN A RANDOM ENVIRONMENT 51

[36] N. Konno and T. Shiga. Stochastic partial differential equations for some measure-valued diffusions. Proba-
bility Theory and Related Fields, 79(2):201–225, Sep 1988.

[37] C. Labbé. The continuous Anderson hamiltonian in d ≤ 3. arXiv preprint arXiv:1809.03718, 2018.
[38] G. Malécot. Les Mathématiques de l’hérédité. Masson et Cie, Paris, 1948.
[39] J. Martin and N. Perkowski. Paracontrolled distributions on Bravais lattices and weak universality of the 2d

parabolic Anderson model. Ann. Inst. Henri Poincaré Probab. Stat., 55(4):2058–2110, 2019.
[40] J.-C. Mourrat and H. Weber. Convergence of the two-dimensional dynamic Ising-Kac model to Φ4

2. Comm.
Pure Appl. Math., 70(4):717–812, 2017.

[41] L. Mytnik. Superprocesses in random environments. Ann. Probab., 24(4):1953–1978, 1996.
[42] L. Mytnik and J. Xiong. Local extinction for superprocesses in random environments. Electron. J. Probab.,

12:no. 50, 1349–1378, 2007.
[43] J. Pausas, J. Carreras, A. Ferré, and X. Font. Coarse-scale plant species richness in relation to environmental

heterogeneity. Journal of Vegetation Science, 14(5):661–668, 2003.
[44] A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44 of Applied

Mathematical Sciences. Springer-Verlag, New York, 1983.
[45] N. Perkowski and T. C. Rosati. A Rough Super-Brownian Motion. arXiv e-prints, page arXiv:1905.05825,

May 2019.
[46] P. B. Rainey and M. Travisano. Adaptive radiation in a heterogeneous environment. Nature, 394(6688):69,

1998.
[47] W. Sickel. Pointwise multipliers of lizorkin-triebel spaces. In J. Rossmann, P. Takáč, and G. Wildenhain,

editors, The Maz’ya Anniversary Collection, pages 295–321, Basel, 1999. Birkhäuser Basel.
[48] J. Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4), 146:65–96, 1987.
[49] A. Stein, K. Gerstner, and H. Kreft. Environmental heterogeneity as a universal driver of species richness

across taxa, biomes and spatial scales. Ecology letters, 17(7):866–880, 2014.
[50] J. Tews, U. Brose, V. Grimm, K. Tielbörger, M.C. Wichmann, and F. Schwager, M.and Jeltsch. Animal

species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal
of biogeography, 31(1):79–92, 2004.

[51] H. Triebel. Theory of Function Spaces. Modern Birkhäuser Classics. Springer Basel, 2010.
[52] J. B. Walsh. An introduction to stochastic partial differential equations. In P. L. Hennequin, editor, École

d’Été de Probabilités de Saint Flour XIV - 1984, pages 265–439, Berlin, Heidelberg, 1986. Springer Berlin
Heidelberg.

[53] G. N. Watson. A treatise on the theory of Bessel functions. Cambridge Mathematical Library. Cambridge
University Press, Cambridge, 1995. Reprint of the second (1944) edition.

[54] S. Wright. Isolation by distance. Genetics, 28:114–138, 1943.

Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22 D-04107 Leipzig
Email address: klimek@mis.mpg.de

Freie Universität Berlin FB Mathematik und Informatik AG Stochastik Arnimallee 7 D-14195
Berlin

Email address: rosati.tom@fu-berlin.de


