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ABsTRACT. We study large scale behaviour of a population consisting of two types which evolve
in dimension d = 1,2 according to a spatial Lambda-Fleming-Viot model subject to random
time-independent selection. If one of the two types is rare compared to the other, we prove that
its evolution can be approximated by a superBrownian motion in a random time-independent
environment. Without the sparsity assumption, a diffusion approximation leads to a Fisher-KPP
equation in a random potential. We discuss the longtime behaviour of the limiting processes ad-
dressing Wright’s claim that the variation in spatial conditions contributes positively to genetic
variety in the populations.

The crucial technical components of the proofs are two-scale Schauder estimates for semidis-
crete approximations of the Laplacian and of the Anderson Hamiltonian.
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INTRODUCTION

A fundamental challenge in population genetics is to understand the interplay between different
evolutionary and ecological factors and their overall contribution to genetic variety, i.e. the
distribution of different types within a population. A prominent example of such a force is a
random neutral process of ‘genetic drift’, which occurs due to random reproduction of organisms.
Another one is the adaptive process of selection. Both genetic drift and selection work, in
different ways, to reduce the genetic variability of populations. However, other ecological and
evolutionary forces may counterbalance those factors and explain durable heterogeneity within
the populations.

Starting with the pioneering works by Wright [54], spatial structure has played a key role in
understanding genetic diversity. Since individuals inhabit different, possibly distant geographical
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regions and do not move too far from their place of birth, the likelihood of mating between
geographically distant populations is very small. This leads to a greater differentiation between
subpopulations, as distant individuals evolve essentially independently of each other. In extreme
cases, this mechanism, which is usually referred to as isolation by distance may even lead to
creation of different species. Even though, in principle, selection acts to reduce the genetic
variety, Wright argued in the same article that if the selection is spatially heterogeneous, that
is, if selection favors different types of individuals in different regions in space, it may further
enhance the differentiation coming from isolation by distance. A large body of empirical evidence
suggests that this may indeed be the case. Studies on plants [43], bacteria [46], animals [34] seem
to all confirm that the spatial environmental inhomogeneity enhance the diversity. For more in-
depth description of biological literature, including less favorable viewpoints of the phenomena
we are concerned with, we refer to [50], [30], [49].

Our work is similarly motivated by the question: does spatially heterogeneous selection en-
hance the genetic diversity?

There are many approaches one could take to model a spatially structured population. The
stepping stone models (see i.e. [35]), where the population evolves in separated islands dis-
tributed on a lattice and interacts only with neighboring islands, lead to an artificial subdivision
of population. Approaches based around Wright-Malécot formula [4) 38, [54] (which was intro-
duced to study the isolation by distance phenomena) suffer from either inconsistencies in their
assumptions or lead to unnatural ‘clumping’ of the population. We refer to [6] for an overview
of difficulties associated with modelling spatially distributed populations. The spatial Lambda-
Fleming-Viot (SLFV) class of models, introduced in [2I] and formally constructed in [5], has
been proposed specifically to overcome those difficulties, and is at the basis of our work. Here
the population in distributed over continuous space, whereas the reproductive events involve
macroscopic regions of space (in this work balls of a fixed radius € € (0,1)) and are driven by a
space-time Poisson point process.

In the neutral SLFV there is no bias in the relative fitness of the populations at hand. Our
work considers instead the case in which the population consists of just two types (a and 2A)
and their relative fitness is modelled by a sign changing selection coefficient s.(x),z € T? (the
latter being the d-dimensional torus), so that a is favored in the location z if s.(z) > 0 and A
is favored in the opposite case. Instead of choosing a specific selection coefficient, we sample it
from a probability distribution P. We will consider the proportion X, (w,t,z) , evaluated at time
t > 0 and position & € T, of particles of type a with respect to the total population, given the
realization s.(w) of the selection coefficient. The parameter € > 0 indicates the size of the impact
area of reproductive events: we are interested in the limit ¢ — 0 and will scale the magnitude of
the reproductive events and the strength of the selection coefficient s, according to € as well. All
our scaling limits are diffusive and the effect of selection is weak with respect to neutral events.

We study two different scenarios. In the first one, we assume that type a is rare compared to
2A. The rarity is described by considering an initial condition X, (w,0,z) of order £¢ for certain
values of ¢ > 0. In this scenario a represents a mutation which tries to establish itself among
the wild type 2. Just as a small sub-population in the Wright-Fisher model is described by a
branching process, we expect the limit to be a superBrownian motion (see [20] for an introduction
to superprocesses) in a random time-independent environment. A similar scaling result without
selection was first obtained by [12] (see also [I7] for an analogous result regarding the voter
model) and recently extended in [16] to critical values of the parameter p. A scaling limit for a
model with a selection coefficient which is white in time and correlated in space, was obtained
by [13] using a lookdown representation.

We will assume, instead, that s, scales to a spatial white noise ¢ on the torus T¢ and consider
only dimension d = 1,2. In this setting, the limit (cf. Theorem is the rough superBrown-
ian motion introduced in [45], which formally solves the following stochastic partial differential
equation (SPDE) for some vy > 0 (in d = 2 the SPDE has to be replaced by the associated
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martingale problem):
(1) &Y =AY + (€ — colpgny)Y +VYE,  Y(0) =Y.

Here 8 is a space-time white noise independent of £. The oo appearing in d = 2 is the consequence
of the renormalization required to make sense of the Anderson model, which is described by the
SPDE

(2) OY = gAY + (§ — olyg—0)Y, Y (0) = Yp.

The latter equation is singular in d = 2 because the expected regularity of the solution Y is not
sufficient to make sense of the product £-Y and requires theories such as regularity structures or
paracontrolled distributions (cf. Section[6|or see [29} 28] for complete works on singular SPDEs).
In particular, there is no understanding of the Anderson model in dimension d > 4. We restrict
to d < 2 as these are the biologically interesting cases and in d = 3 renormalization is more
involved. The quoted solution theories for singular SPDEs work pathwhise, conditional on the
realization of the noise £ and some functionals thereof. As a consequence, solutions to (|l)) are
defined as martingale solutions conditional on the realization of £ and uniqueness in distribution
of solutions to is then proven through a conditional duality argument. This is in contrast
with cases where the environment is white in time [41], where the martingale term can contain
also the environment.

A crucial step in the proof of the scaling limit is to show that the continuous Anderson
Hamiltonian H = 1pA + £ — ocolyg_y} is the limit of approximations H. = Ac + & — cclyg—9)
(cf. Theorem . In the latter operator, the approximate Laplacian A. acts on L%(T¢)
and is expressed in terms of local averages of functions: we call this setting semidiscrete, as
opposed to the fully discrete setting, where the underlying space is for example a lattice. Fully
discrete approximations of singular SPDEs have been the object of many studies (see [40), 19,
14], 39] for a partial literature). Instead, approximations in the present semidiscrete case appear
new. In the study of such SPDEs the smoothing effect of the Laplacian is crucial: the first
step towards understanding the convergence of the operators is to establish the regularization
properties of the approximate Laplacian A., commonly known as Schauder estimates. Through
a two-scale argument, we separate macroscopic scales in frequency space, at which A, regularizes
analogously to the Laplacian, and microscopic scales, which are small but see no regularization
(see Theorem . Once we are provided with the Schauder estimates and the convergence of
H, the scaling limit is proven through an application of the Krein-Rutman theorem. At this
point it is particularly important that the space is compact, while all other results in this work
seem to extend from T¢ to R<.

In the second scenario, s. is chosen to scale to a smooth random function &, and we do not
take the sparsity assumption. This regime corresponds studying the long time behaviour of a
large population. In this case under diffusive scaling one obtains (cf. Theorem convergence
to a solution of the (in d = 1 stochastic) Fisher-KPP equation

(3) X = pAX +EX(1— X) + VX1 - X)lygery,  X(0) = Xo.

As before E is a space-time white noise independent of &. In a nutshell, the intensity of the
martingale term is governed by a parameter n > 0 and there exists a critical value n.(d) > 0
such that the martingale term is of order €7~"¢. In dimension d = 1 we consider 1 = 7., while
in dimension d = 2 we take 1 > n.. In some models, by taking into account dual processes, cf.
[21] 24] , one can prove that in d = 2 the deterministic limit holds also at the critical value. To
the best of our knowledge the process we consider does not have a dual: hence although a similar
result is expected, it remains open as the quoted methods do not apply. Due to the same lack
of duality, in d = 1 uniqueness of the solutions seems out of reach. Similar results have been
obtained in [22] where the selection coefficient is constant in space and time (in this case the
process admits a dual) and in [7], where the selection coefficient is fluctuating in time and space
and correlated in the latter, giving rise to an additional martingale term.
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The treatment of this second regime is apparently much simpler, as the solution is bounded
between 0 and 1. The only difficulty is to prove convergence in a topology, in which one can pass
to the limit inside the nonlinearity. Unlike the previous works [22, [7] we can make good use of
the Schauder estimates and directly prove tightness for a smoothed version of X, in a Sobolev
space of positive regularity (see Theorem .

Eventually, we study the longtime behavior of the limiting processes. As already observed
in [45], the time-independent random environment is beneficial for the survival of the rough
superBrownian motion, which then depends just on the positivity of the largest eigenvalue of
the Anderson Hamiltonian H. We will show that with positive probability, with respect to the
environment, the process will survive (cf. Proposition. As a comparison, observe that if the
environment is fluctuating also in time, the process can die out quite dramatically, for example
see [42]. As for the second setting, in d = 1 the presence of genetic drift implies that the solution
to becomes trivial in finite time. If d = 2, if the initial condition is not identically 1 or
0, and if the noise is sufficiently strong (see Assumption and Remark , the solution
converges to a unique non-trivial X (w), which amounts to longtime coexistence of both types
(cf. Proposition [1.20)).

In conclusion, this work extends previous scaling limits to incorporate a sign changing, possibly
rough, selection. Choosing the selection at random provides a natural setting which exhibits
interesting longtime behavior. We believe this could be the starting point for some ulterior
studies: for example Equation in d =1 with z € R (so globally in space) can be recovered
with the same methods and could have interesting longtime properties, as the selection could
balance out the genetic drift. The methods we used are based on two-scale Schauder estimates
and do not rely on duality. They allow us to establish a connection to singular SPDEs, but
appear to be a fairly simple, powerful tool to treat nonlinearities appearing in the SLFV.

Structure of the paper. In Section [I we describe the notations, define the models and state
main results. Section [2]is devoted to relation between the Spatial Lambda-Fleming-Viot process
with selection in rough potential and the rough superBrownian motion, whereas in Section [3] the
similar relationship with Fisher-KPP equation in rough potential is established. The long time
behaviour of the limiting processes is discussed in Section The rest of the paper is devoted
to analytical backbone of our results. Section [5] covers Schauder estimates. Finally, Section [f]
discusses the analytical and probabilistic aspects of the Anderson model.

Acknowledgements. We would like to thank Nicolas Perkowski for many helpful discussions
and comments, and Guglielmo Feltrin for an enlightening conversation.

1. MODELS AND STATEMENT OF MAIN RESULTS

We begin with stating the notation used throughout the paper in Subsection [I.1] In Sub-
section [I.2) we describe the Spatial-Lambda-Fleming-Viot. In Subsection [I.3] describe the small
families limit which is the first of our main results. Subsection [[.4] is devoted to diffusive scal-
ing which leads to Fisher-KPP equation. In Subsection [I.5] we describe the main analytical
components of the proofs, which we believe may be of separate, purely mathematical interest.

1.1. Notations. We write N = {0,1,2,...}, and Ry = [0,00). Fix d € N. The d—dimensional
T? torus is defined as T¢ := [~1/2,1/2]% /~, where ~ is the equivalence relation which glues
opposite edges. For notational convenience we use the following convention.

We write ¢ € (0,1/2) for e=1/n, forsome neNn>2.

Then we introduce the following scaling for balls and cubes. Indicate with |A| the Lebesgue
measure of a Borel set A C T?. Let then B.(x) C T? be the ball (w.r.t. the Euclidian norm) of
volume ¢ about z. Similarly, let Q.(z) C T¢ be the d-dimensional cube

Y€ Q:(x) < (y—u)i €[ —¢/2,¢/2), Vie{l,...,d}.
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In particular, in our notation
|Be()| = |Q(2)| = &”.

Now, for integrable w: T¢ — R define II,w(z) as an average integral of w over B.(x), that is

Mew(x) ::][ ( )w(y) dy = B 1

w(y) dy.
(@)| JB. (@)
Furthermore, consider the lattice

78 — (s—lzd) AT

€

Since € = 1/n, cubes Q., centred at the points of lattice Z¢ are disjoint and satisfy

T = | Q:(x)

TELe

We make use of the Fourier transform both on the torus and in the full space. For ¢ € S'(T4),
that is for an element of the space of tempered distributions on T¢, we define

(k) = Frap(k) = / e kT £ (Y da, ke ZY.
Td
Analogously, for ¢ € §'(R%)
Frath(k) = / e kT (r)de, ke R
R4

These Fourier transforms admit inverses, which we denote with ]-"Td ,.7-" 4 respectively.

For a: Z¢ — R with at most polynomial growth we define the Fourier multiplier as an operator
of the form

a(D)p = Fri (a(-)Fra(), Ve € S'(T).

Since characteristic functions, normalized to integrate to 1 over the entire domain, enter the

calculations repeatedly, for a set A we write:
1
xa(z) = WlA(x).
In the special case of balls and cubes we additionally define
Xe(x) := €_d135(0)(93)» Xe(k) = X(ek) := Fraxe(k) = Fraxe(k),
Xo.(@) = g @),  Xa.(k) = Xo(ek) == Fraxq. (k) = Fraxq. (k).

Observe that in order to obtain the identity between the Fourier transform on the torus and in
the full space, the ¢ should satisfy ¢ < 1/2 < /7/2, as otherwise the ball of radius ¢ about 0

intersects the boundary of the torus.
A special role in the paper is played by an operator A. defined as

(4) Ac(o) () = 2 ][ . ][ (2) dz dy = e (I2p—) ().

Such an operator is a Fourier multiplier Wlth
1
X*(ek) -1
We proceed with a definition of Besov spaces. Following [3] Proposition 2.10], fix a dyadic
partition of the unity {g;};>—1. We assume that j > 0, 9;(-) = 0(277-) is a radial, smooth
compactly supported function. For a distribution ¢ € &'(T?) define Ao = p;(D)¢ and hence
define the spaces By, for « € T,p,q € [1, 00] via the norms

A =09.(D),  U.(k)=¢e2

leliBg, = 1% 1Al Lo(ray)j=—1llea(m—1)-
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Since the partition of unity was chosen to be smooth, we define the Besov spaces on full space
via the same formula. It is convenient to introduce notation
K§(y) = Frapj(z —y).

For o € Ry \ Ny and p,q = oo the above definition coincides with that of classical Holder

spaces. We therefore write
C* := B, oo Cy =By -
We shall denote the norm of the Hélder space C* by || - ||q-

Let M(T%) denote the space of finite positive measures over T¢. For metric spaces X,Y
let C(X;Y) and Cy(X;Y) the space of continuous, and bounded and continuous, respectively
functions from X to Y. If Y = R, we may drop the second argument. In addition for a metric
space X we define D(]0,00); X) to be the space of cadlag functions with values in X, endowed
with the Skorohod topology as in |23, Section 3.5] (similarly for finite time horizon 7" > 0 we

write D([0,T]; X)). If X is a Banach space we write L?([0,7]; X) for the space of measurable

functions ¢ on [0, T taking values in X and satisfying ||| z2(j0,7;x) = (fOT lo(s)1% ds) V2 < .

The local variant of the space for T' = oo is then defined as L ([0,00); X) = (o L*([0,T]; X).

loc

1.2. Spatial A-Fleming-Viot process in a random environment. We now turn our atten-
tion to the description of the underlying popuation model, the Spatial Lambda-Fleming-Viot
model in a random environment. We are interested in a population with two genetic types, a
and A. At each time ¢t > 0, X} is a random function such that

X{ = proportion of individuals of type a at time ¢ at position x.

The dynamics of the Spatial Lambda-Fleming-Viot model is determined by reproduction
events, driven by independent Poisson point processes. In order to incorporate selection, we
follow the usual strategy and distinguish two types of reproduction events, neutral and selective.
In simple terms

Neutral: Both types have the same chance of reproducing,

Selective: One of the two types is more likely to reproduce than the other.

The strength, as well as the direction of the selection are encoded by the magnitude and sign of
the random function s.(w). The function s, should satisfy

(5) Q35w se(w) € L°(T4R), |se(w,z)| < 1, with (2, F,P) a probability space.

Conditional on the realization s.(w) of the environment, the process X¢(w) will be a Markov
process. Its dynamics are defined below, deferring some technical steps regarding existence and
construction of the probability space (2 x Q') F @ F',P x P¥) on which the process is defined
until Appendix [A] We write:

M = {w: T* - [0,1], w measurable}.

Definition 1.1 (Spatial A-Fleming-Viot process with random selection). Fize € (0, 3),u € (0,1)
and consider s; and ) as in . Let X50: T% 5 R be such that 0 < X0 < 1. Define the process
X°¢ on the probability space (Q x ', F @ F',P x P¥) | so that for every w € Q it holds that

i) The space (', P¥) supports a pair of independent Poisson point processes IR and TI5¢!
on Ry x T with intensity measures dt®(1—|s.(w, z)|)dx and dt®|s.(w, z)|dz respectively.

ii) The random process (defined on ') Ry > t — Xj(w) is the Markov process started in
X0 with values in M associated to the bounded generator

L(g,sc(w),u): Cp(M;R) — Cp(M;R)

(see again Lemmafor a rigorous construction), that can be described by the following
dynamics.
(1) If (t,z) € III™, a neutral event occurs at time t in the ball Be(z), namely:
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(a) Choose a parental location y uniformly in Be(z).
(b) Choose the parental type p € {a,A} according to the distribution

Plp=a = X; (w,y), Php=A=1-X (w,y).

(c) A proportion u of the population within B:(x) dies and is replaced by offspring
with type p. Therefore, for each point z € B(x,r),

Xi(w,2) = X§_(w, 2)(1 — u) + ux {p=q}-

(2) If (t,x) € T3¢, a selective event occurs in the ball Be(x), namely:
(a) Choose two parental locations yo,y1 independently, uniformly in Be(x).
(b) Choose the two parental types, po,p1, independently, according to

]P)[pl = Cl] = Xff(w)yi% P [pl = Ql] =1- thf(wayi)'

(c) A proportion u of the population within B.(x) dies and is replaced by offspring
with type chosen as follows:
(1) If s(x) > 0, their type is set to be a if po = p1 = a, and 2A otherwise.
Thus for each z € Be(z)

Xf(“’? .%') - (1 - u>XtE—(w7 Z) + UX{po=p1=a}-

(ii) If s(x) < 0, their type is set to be a if po = p1 = a or pg # p1 and A
otherwise, so that for each z € Be(x),

Xi(w,2z) = (1 -w)Xi (w,2) + u(X{F():m:a} + X{Poipl})'

Remark 1.2. Strictly speaking, the process constructed in Appendiz[4]is a Markov jump process
X¢(w). The Poisson point processes mentioned in Definition are not constructed explicitly,
but can be reconstructed from the jump times and jump locations.

Most of our arguments take advantage of the martingale representation of the process. We
record this representation as a Lemma. The proof can be found in Appendix [A] For a function
f on [0,00) we write

ft,s = ft - fs-

Lemma 1.3. Fiz w € Q and X° an SLFV as in the previous definition. For every ¢ € L'(T%)
the process t — (X5 (w), @) satisfies the following martingale problem, for everyt > s >0

(Xis(w) ) =u€d/ ((2-1d) (X5 (@), @)+ (e [52 (w) (L X (w) = (I X5 (w))?) ], ) dr+M ()

where Mf,s(‘ﬂ) s the increment of a square-integrable martingale with predictable quadratic vari-
ation given by

(M=())1 =u2€2d/0 (1 se (W) XF (w), (Iew)* ~2(He) (T (X5 (w))))

+ (X5 (@)2)) 1) = (e (w) (X5 (@), (M) =2(Tep) (T (X (w)0)) )

1.3. Sparse regime. First, we consider a scaling regime in which the type a is rare, which means
that X7 is very close to 0. Heuristically, if €” is the magnitude of the local population density,
then Y; = e7? X} models the density of the number of individuals of type a. This justifies the
following ‘smallness’ assumption on the sequence of initial conditions of the process.

Assumption 1.4 (Sparsity). Fiz a 0 > 5d/2 and a sequence X0 € L>(T) such that for some
Y9 e 1°(T9)
0< X0 <1, lim e 2X%0 = Y9 in L°°(TY).

e—0
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We would like to describe a scaling limit in which even though none of the types is overall
favourable, the selection can be locally strong. In particular, our selection coefficient will con-
verge to space white noise. However, to obtain a non-trivial scaling limit in dimension d = 2,
renormalization has to be taken into account. The sequence of renormalization constants c. is
determined by the sequence which allows constructing solutions to the Anderson model, namely

X (ek) Xl )
® -y Ve
kez?
The assumptions on the noise are summarized in what follows. We emphasize that & is an

approximation of space white noise.

Assumption 1.5 (White noise scaling). Consider a probability space (2, F,P) on which is de-
fined an 1.i.d. sequence of random variables {Zg(:c)}xezg with all moments finite and satisfying:

E[Z3(z)] =1,  Z.(w,2)€ (-2,2), forall €28 e€(0,1/2), weQ.
Then define

Se(w,y) = Ze(w,z) — 53051{61:2}, if y € Qe(x), Yw € Q,z € T¢
and write:
d
5:(0% r) =€ 25:(w, z), fe(w,z) = 5:(00, T) + Csl{d:2}~

Under appropriate scaling, we will prove that the process X¢ converges to a rough super-
Brownian motion. This process has been introduced and studied by [45] as an approximation of
lattice branching process in a static environment. First, recall the construction of the Anderson
Hamiltonian, and its relationship to our setting.

Lemma 1.6. Let (Q, F,P) be a probability space supporting a white noise &: Q — S'(T?), that is
a process such that for all f € S(T?) the projection (&, f) =: [1a f(2)€(dx) are Gaussian random
variables with covariance

E[(¢, £)(6.9)] = (f.9), Vf,9 € S(T9).

For almost all w € Q) there exists an operator
H(w): D, C C(T%) — C(T%),
with a dense domain D,, C C(T%), such that

H(w) = 21_1)% Ae + &e(w) — Cgl{dzg}} = 1A + {(w) — 0lg_gy.

The limit is taken in distribution with respect to the probability measure P, with the precise
meaning of the procedure provided in Theorem [I.23. The last notation is just a convenient
formalism obtained by exchanging the limit with the sum.

This lemma is a consequence of Proposition [I.22] and Theorem [I.23] below. The rough super-
Brownian motion is then a Markov process condmonal on the realization of the spatial white
noise and thus on the realization of the Anderson Hamiltonian.

Definition 1.7. Let (Q, F,P) be a probability space supporting a white noise & and Y° € M(T9).
A rough superBrownian motion is a couple composed of an enlarged probability space (Q x Q, F ®
F,Px @w) (where F @ F is the product sigma-field and P* is the conditional law of the process
given the realization of the noise, see Appendixfor a definition of semidirect products) and a
map

Y:QxQ— C([0,00); M(T?).
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Moreover, for w € Q let {F{"}i>0 be the filtration generated by t — Yi(w), right-continuous and
enlarged with all null-sets. Then, for all w € Q such that the operator H(w) is defined, and for
all ¢ € D, and T > 0, the process

Mfz@%»@—@ﬁ@—/@@@ﬂwme
0

is a centered continuous, square-integrable Fy’-martingale on [0,T] with quadratic variation

t
(M%) = [ (Vi) ) ds.
0
We are now in position to state the first of the main results.

Theorem 1.8. For any o > %d consider a random environment s. as in Assumption and
initial conditions X as in Assumption [1.4 Consider the process X¢ as in Definition
associated to the generator

5_‘1_2_"5(5,52_gsg(w),e”),
with 1 defined by
(7) n:=p+2—d.

Then the process t — Y,° = 72X} converges in distribution, as a stochastic process on the

probability space (2 x ', F @ F',P x P¥) (cf. Definition|[1.1):
limYe =Y in D([0,00); M(T?),
e—=0

where Y is the unique in distribution rough superBrownian motion as in Definition started
in YO,

Remark 1.9. The scaling in Theorem corresponds to scaling down the impact of each of
the events by €", the rate of selective events by €2~42, setting the volume of the ball in which of
each of the events occurs to € and speeding up the time by e~2~9". A fraction of order P of the
individuals present initially in the population is of type a.

The coefficients appearing in the rescaling could be interpreted as follows. The term e =427

guarantees diffusive scaling, namely that a Laplacian appears in the limit. The scaling of s,
guarantees convergence to space white noise. Finally, the parameter 1 guarantees that the limit
is non-trivial. limit; it’s only impact is determination of the only first non-trivial term in the
quadratic variation.

An interesting feature of the rough superBrownian motion on a torus is persistence.

Definition 1.10. A random process t — Y (t) defined on a probability space (0, F,Q) is persis-
tent if for any o € S(T9) and € > 0

Q( lim (Y (), ) >¢€) > 0.

t—o00

Proposition 1.11. Let Y (t) be a rough superBrownian motion in a static environment as in
Definition[1.7. Then:

P(The process t — Yi(w) is persistent w.r.t. the law P* ) > 0.
The proof of Proposition can be found in Subsection

1.4. Diffusive regime. The second scaling regime we consider is the diffusive one. As before,
the impact parameter u is scaled as e~". The restrictions on the value of n follows

Assumption 1.12. Choose i such that
n=11if d=1, n>0 if d=2.

In the diffusive regime we still assume that the selection coefficient is random, yet it is not
described by a an object converging to space white noise.



10 ALEKSANDER KLIMEK AND TOMMASO CORNELIS ROSATI

Assumption 1.13. Consider a probability space (Q, F,P) and let £ be a measurable map:
£:Q— S(TY.
Then define:
se(w, ) = e2€(w, x).
Then we define the (stochastic if d = 1) FKPP equation in a random potential as follows.

Definition 1.14. Let (Q, F,P) be a probability space supporting a white noise & and X° € Bg,.
A (stochastic if d = 1) FKPP process in random potential is a couple given by a probability space

(QxQ,FQF,PxP’) (cf Deﬁmtion and a map
X:QOxQ— L2 ([0, oo);B%Q),

loc

for some o > 0. Moreover, for w € Q let {F{"}i>0 be the filtration generated by t — Xi(w),
right-continuous and enlarged with all null-sets. Then for all w € Q it is required that, depending
on the dimension:

(1) In dimension d = 1 for all p € C>(T%):

Ny = <Xt(W)760>(X0,<P>/O (Xs(w), v0Ap) — (€(w) Xs(w)(1 — Xs(w)), p)ds

18 a continuous in time, square integrable martingale with quadratic variation

)= [ = Xl .
(2) In dimension d =2, X is a solution to
O Xi(w) = AX(w) + (W) Xe(w)(1 — Xi(w)),
Xo(w,z) = X(w, z), Vo € T%
It is interpreted in the sense that for all ¢ € C*°(T?)

(Xie(w), ) = (X", ) +/0 (Xs(w), 10Ap) + (€(w) Xs(w)(1 — Xs(w)), ) ds.

Remark 1.15. Note that in the previous definition, since X € LIQOC([O,OO);BS‘Q), the quadratic
non-linearity:

t
/ (X2, p)ds
0

1s well-defined. Moreover, up to enlarging the probability space, the process can be represented in
d =1 as a solution to an SPDE of the form

90X =1pAX +EX(1 - X))+ V/X(1 - X)E,

where the spatial noise € is independent of the space-time white noise §~, following a classical
construction by Konno and Shiga [36] (see also [45, Theorem 2.18] for a similar case in a random
environment).

In this setting, we can prove the following scaling limit.

Theorem 1.16. Let n satisfy Assumption and s be as in Assumption [I.15 Consider
Xo € S(T%), and let X¢(w) be the Markov process associated to the generator

eI L (e, s0(w), €M)
and started in Xg, as Definition (1.1, There exists an o > 0 such that for every w € Q
{t = Xi(w)}ee(0,1/2)

bc([0,00); BSy). In particular:

loc

1s tight in the space L
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(1) In dimension d = 1 if n = 1 any subsequential limit is a stochastic FKPP process in a
random potential as in Definition |1.1/)

(2) In dimension d = 2 the entire sequence converges in distribution to an FKPP process in
a random potential as in Definition |1.14)

Remark 1.17. The scaling in Theorem [1.16 is very similar to that of Theorem[1.8 Once again
the impact of each of the events is scaled by " (with a different value of n), the rate of selective
events by €2, the volume of the ball in which of each of the events occurs is set to € time is sped
up by €279, We do not place any restrictions on the relative sizes of the initial population.

As before, we can now study the longtime behavior of the limiting process. In dimension d = 1
the presence of the genetic drift implies triviality in finite time. In dimension d = 2 we have,
conditional on the realisation of the noise, a deterministic equation. In order to prove longtime
coexistence of the two types we require that the noise is sufficiently strong

Assumption 1.18. Fiz (2, F,P) as in Definition . Let M (A =€), M (A + &) be the largest

eigenvalues of the operators A + & and A — € respectively. Then assume that:
P()\l(A —i—f) > 0, /\1(A —E) > O) > 0.
These assumptions are not too far-fetched we two cases in which they are naturally satisfied.

Remark 1.19. If the noise is symmetric and sufficiently “strong” , Assumption[I.18 hold.
(1) Consider for example d = 2 and . = e~ %p(c=%) x £, where & is space white noise on T,
0 is a smooth symmetric positive function with compact support and [pq o(x)dz =1 and
e € (0,1). Then there exists an o > 0 such that for e > g

— 1
PA(A4E,) >0) > 3
which by symmetry implies
PAM(A + &), M(A =€) >0) > 0.
In fact in |2], for the construction of the continuous Anderson Hamiltonian H in d = 2,
the authors prove that there exists a deterministic sequence c. ~ log% such that A (A +
&(w)) —ce = M (H(w)) € R for almost all w € Q.
(2) Instead of taking a sufficiently close approximation of white noise, one can take a suf-
ficiently large domain. Consider o as above and & space white noise on RY, € = o * €.

Then instead of considering the Laplacian on the unit torus, consider Ay, the Laplacian

on L?>(LT?), the latter being the torus of size L > 0 (i.e. [—%, é]d with periodic boundary

conditions). Then there exists an Lo > 0 such that for all L > Ly
= 1
which as before implies the requirements. An indirect proof of this fact can be found in
[11l Theorem 5.1|, see also [15] for a similar result with & being space white noise.
We can then prove the following result (here X = ¢ € R means that X (z) = ¢,Vz € T%).

Proposition 1.20. Consider X a process as in Definition |1.14)
(1) If d = 1, then P x P“-almost surely there exists a finite random time T, such that
X;=1, or X,=0.
(2) Ifd=2 and Assumption is satisfied, and if Xo # 1, Xo # 0, for every w € Q there
exists an X € By for some a > 0, with 0 < X <1, such that
X(w) = lim Xy(w) in B,
t—o0 ’

and

P(X#1,X#£0)>PA(A+E) >0, (A-¢) >0)>0.
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The proof of this proposition can be found at the end of Section [4 in Lemmata [4.2) and

1.5. Proof methods. The main ingredient of the proofs is a careful study of the operator A..
Intuitively, one expects that this operator approximates the Laplacian with periodic boundary
conditions and therefore has similar regularizing properties. To quantify this intuition we in-
troduce a division of scales. On large scales, namely for Fourier modes k of order k£ < 1/ we
show that A, has the regularizing properties of the Laplace operator. On small scales, that is
for modes of order k£ 2 1/e we do not expect any regularization. Instead we prove that small
scales are negligible. To divide small and large scales we use ‘projection’ operators P, and Q.
on large and small scales respectively. Here we state a slimmed version of the results we require.
The proof of the following theorem, as well as additional side results, is the content of Section [f]

Theorem 1.21. There exists a smooth radial function with compact support T: RY — R such
that for some 0 <r < R
(k) =1, V[k| <, (k) =0, V|k| > R.
Define
P. ="(eD), Q. = (1-"0)(eD).
For any a € R,p € [1,00] the following holds"
i) For any ¢ >0 and ¢ € Cyf

Ao — 19Ap in 03_2_C, as € — 0,
where
(8) I L d=o
vo=15 Jor d=1, vo=— for d=2.

ii) Uniformly over A > 1,e € (0,1/2) and ¢ € C; the following estimates hold:
IPe(—As + M) pllgare + 721 Qe(— A + X) " olleg S llellcg-

In particular, a precise control of the regularization effects of the semidiscrete Laplacian A,
allows us to treat semidiscrete approximations of the Anderson model that appear in the study
of the rough superBrownian motion. In the next proposition we recall some salient features of
the continuous Anderson Hamiltonian.

Proposition 1.22. Fiz k£ > 0 and & satisfying Assumption [1.5. Up to changing probability
space there exists a space white noise &: Q — S'(T?) for which the following hold true for almost
all w € Q. The Anderson Hamiltonian

H(w) = V()A + 5((«]) - OOl{dZQ}

associated to {(w) is defined, as constructecﬂ in [25] in d =1 and |2] in d = 2. The Hamilton-
ian, as an unbounded self-adjoint operator on L?(T?), has a discrete spectrum given by pairs of
eigenvalues and eigenfunctions {(Ag(w), ex(w)) tren such that:

Ao(w) > A(w) > Aa(w) > ..., klim A (w) = —o0, eo(w, ) > 0,Vz € T
—00

In addition, for every k € N, e(w) € C27%7“(Td), and the set
D,, = { Finite linear combination of {ex(w)}ren}
is dense in C(T?).

The operator A, is a tool which provides us with a semidiscrete approximation of the contin-
uous Anderson Hamiltonian.

ITo be precise, [25] constructs the operator in dimension d = 1 with Dirichlet boundary conditions, but their
construction can be extended to periodic boundary conditions. Alternatively, the operator can be constructed
with arguments similar to the ones presented in Section @
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Theorem 1.23. Fiz x > 0 and & satisfying Assumption[1.5. Up to changing probability space
the assertions of Proposition hold true. For every k € N there ezists an eo(w, k) € (0,1/2)
such that for every e < eo(w, k) there exists a pair of eigenvalue and associated eigenfunction
(AL (w), ex(w)) for the operator

He(w) = A+ (&(w) )2, He(w): LA(TY) — LX(TY),
with cc as in @, such that
lim A7 (w) = A (w), lim IT.ef,(w) = ex(w) in C2_%_”(Td).
e—0 e—0
The proof of this result can be found in Section [6]

2. SCALING TO THE ROUGH SUPER-BROWNIAN MOTION

This section is devoted to the proof of Theorem [I.§f We leverage the analytic results of
Theorem to obtain tightness of the sequence Y. Uniqueness of the limit points the follows
by a conditional duality argument.

2.1. Scaling limit. The core of the tightness proof is conditioning on the realization of the
environment. Since we want to prove convergence in distribution for the sequence Y€, the exact
choice of the probability space €2 of Definition is not important. For this reason we adopt the
following standing assumption that allows us to work with a suitably chosen probability space.

Assumption 2.1. Let (2, F,P), the probability space appearing in Definition and Assump-
tion be such that the results of Proposition and Theorem hold true for almost all
w € €.

The first step towards establishing tightness is to restate the martingale problem of Lemma[I.3|
to take into account the scaling assumed in Theorem [I.§]

Lemma 2.2. In the setting of Theorem and under Assumption for every w € Q and
e € (0,1/2), under the law P, and for every ¢ € L'(T?) the process t — (Y (w), ¢) satisfies the
following martingale problem.:

9)  (Vis(w), o) — My ()

t
=/ (ALY (@) + T & ()L Y ()], ) —e?( (LY (), & ()T () dr,

where ME(p) is a square integrable martingale with predictable quadratic variation given by:

t d
(10) <M6(90)>t=/0 (172 5 (W)LY (w), (Tep)? ~2e°TL (9) I (Y, (w) )

d
+e2((IL (Y (w)p)) %, 1) — e2(e?™ 25 (w) (I1Y, ()2, (Ip)? —2°11L ()1 (Y (w)0)) di,
Remark 2.3. Note that the only term which is not of lower order in the quadratic variation is
<H€)/7'57 (H6¢)2>7

which, combined with the form of the drift term, provides an algebraic heuristic for obtaining the
super-Brownian motion in a static random environment as the scaling limit.

In order to obtain the convergence, the first step is to prove a tightness result.

Proposition 2.4. In the setting of Theorem and under Assumption [2.]] fix any w € Q. For
any T > 0 the sequence {Y*(w)}oc(0,1/2) s tight in D([0,T7; M(T?)). Moreover any limit point
is continuous, i.e. lies in C ([0, T]; M(T?)).

The proof will be based on an application of Jakubowski’s tightness criterion, which we recall
for convenience.
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Proposition 2.5. [32] Theorem 3.1] Let X be a separable metric space. Let F be a family of
real, continuous functions on X which separates points and is closed under addition. Then a
sequence of probability measures {Pp,}nen on D([0,T]; X) is tight if the following two conditions
are satisfied:

(1) For each € > 0 there exists a compact set K C X such that
inf P, (Xy € K, Vt € [0,T]) >1—¢,
neN

where Xy is the canonical process on D([0,T]; X).
(2) For each f € F sequence P, o f~1 is tight as a measure on D([0,T];R).

Proof of Proposition[2] Since w € § is fixed, we omit the dependence on it. The proof is
divided into three steps. In the first two, we check the conditions of Proposition 2.5

In the first step, we establish the compact containment condition. Since for R > 0 sets of the
form Kr = {u: (u,1) < R} € M(T9) are compact in the weak topology, it is sufficient to show
that

(1) ¥6>0, 3R() >0, % > =(5) > 0 such that _int B( sup (¥7,1) < R(9)) > 14
e€(0,£(9)]  Neelo,1)

In the second step, we establish the one-dimensional tightness. By Proposition[I.23] it is sufficient

to show that for every k € N process (Y, ey is tight in D([0, T]; R). By Aldous’ tightness criterion

[1, Theorem 1] this reduces to proving that for any sequence of stopping times 7., taking finitely

many values and adapted to the filtration of Y¢, and any sequence 6. of constants such that

0 —>0ase—0

(12) 8 > 0, ;%P(|<Y;+55,ek> —(YE )| > 5) ~0.

In the third step we address the continuity of the limiting process.
Step 1. By Theorem for any £ € N and € < go(k) there exists an eigenfunction ej,

of H. such that Il.ej — ey in C27%7”(Td). In particular, since eg > 0, we may assume that
II.ef > 0,Ve < e0(0) and hence for any positive measure 1 there exists a C' > 0 such that

<M7 1> < C<M7HE€6>7 Ve < €0<0)'
Therefore follows if one can show that

V6 >0, 3R(5) >0, 0(0) > £(6) > 0 such that  inf IP’( sup (Y, IL.e) < R((S)) >1-4.
e€(0,£(d)]  Neelo,T]

We focus our attention on (Y7, Il.ef). By the martingale representation @D one obtains
t

(¥, TLeef) = (¥, ILef) + / X5 (Y7, Tef) — e2((ILYF), €.11265) dr + My (IL.c5).
0

To treat the nonlinear quadratic term, we shall consider a stopped process. For that purpose
fix R > 0 and consider a stopping time 7r and a parameter gg, defined as

d
mri=nt{t >0 (VA TLe) 2 R, op=o— 52

d
2

Since [&:(x)| < e 2 one can bound

_d_
)27§EH§€6>|§EQ 2 2d<}/7“€/\7'127

£ (IL Y,

TATR

.e5)? < Re®(Y?

TATR’

Il.ep),

and therefore

t
E[(Yry, Hee)* S Y5 | oo + (1 + Re?) /E\(YfAma Ieef)|” dr + E(M®(T1:¢5)) tars-
0
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Furthermore, using the formula for the predictable quadratic variation from Lemma one
obtains

t t
E(M#(11.65))irry SE /0 (ILYS,,, . (12¢5)2) + (TL. (Y, TLcf), TT265)dr <E /0 (Vi Teed) dr.

Therefore, by Gronwall’s inequality, there exists a C' > 0 such that

(13) sup El(Yir, I.ef)|* < e“F.

It follows that if e < R™9
P( sup [(VF,Te§)| > R) = P(|(V,np, Tecf)| = R) S B2
0<t<T

This concludes the proof of compact containment condition .
Step 2. Fix k € N and v > 0. In view of calculations from Step 1 there exist R(y),e(v) for
which holds. Up to choosing a smaller £(y) we may also assume that

0
M h that >e>0: —TI.e5lr00 < .
€ suc at e(y) > ¢ llex c€illne < 2R()

Hence for every e < e(7)

P10V 50 en) — (Vi en)] = 6) <o+ P(|(VE g, Teef) — (Vi Teef)] > 6).
Using representation of Lemma [2.2]

Te+0¢
2
<Y7i+6s’ ng@ - <Y7—€Ea ng@ - / )‘i<Yr€a H€€i> - 5g<(HEYT€) ,&ng@ dr
Te

+ M s, (Heeq) = M7 (Teej).
Hence one obtains (writing for simplicity R instead of R(7)):
P((Y2 5, Tleef) — (Y2, TLef)| > 6) <y +P(|(Y Ief) — (V7

T, Te+0c)ATR? TeATR?

Meef)] > 6).
Computations analogous to those in Step 1. guarantee that
P(IYG 5. pnms Teh) = (Ve prgolleci) 2 0)

< 5_2E[|<Y(Era+5s) Ieey) — (Y7

TeNTR’

eef)|’] < 6.

NATR?

Since 7y is arbitrary, this proves ([12]).

Step 3. So far any limit point Y of the sequence Y lies in the Skorohod space D([0, T]; M (T%)).
Since M(T%) is endowed with the weak topology, to prove that actually Y € C([0,T]; M(T%)),
it is sufficient to show that for any continuous function ¢, (Y3, ¢) is continuous in time. Here one
can apply a criterion [23] Theorem 3.10.2| according to which it is sufficient to prove that the
maximum size of a jump converges weakly to zero. In our case such convergence is even almost
sure, since:

(YE, 0) — (Y2, @)l S ellellomay.

This follows from the definition of the generator, as well as the exact definition of n (cf. Equa-
tion (|7))) jumps are bounded as follows:

IYF = Vil S 79 S 1.

Since a jump has an impact only in a ball B.(z) for some 2 € T?, integrating ¢ over such ball

guarantees the previous bound.
O

Finally we are in position to deduce Theorem [I.8]
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Proof of Theorem[1.8 By Proposition the sequence Y (w) is tight, for every w € Q, under
Assumption (recall that we can always put ourselves in the setting of this assumption by
changing probability space, which does not affect the convergence in distribution). It remains
to show that, for a fixed realization w € €2, every limit point satisfies the martingale problem
for the rough superBrownian motion as in Definition [I.7, which is covered by Step 1, and that
solutions to such martingale problems are unique, which is covered by Step 2.

Step 1. As in the proof of Proposition [2.4] since w € 2 is fixed we omit writing it. Moreover it is
sufficient to fix a finite but arbitrary time horizon T" > 0 and check the martingale property until
that time. Assume that (up to taking a subsequence and applying the Skorohod representation
theorem) Y€ — Y almost surely in D([0,T]; M(T%)). Since D,, is composed of finite linear
combinations of eigenfunctions, it is sufficient to prove the martingale property of Definition [I.7]
for ¢ = e, for some k € N. In this setting, one has that almost surely

t t
M = (Yio, ep) — / (Ya, Hep) ds = (Yio, er) — Ay / (Yo, e) ds
0 0

t
iy |3 M) = [ (ALY) + ILIGTLY] Ief) e#( (1LY 165
0
= lim M; (Tl.e}).
e i’ (Ilee)
The convergence of the linear terms in the second line is a consequence of the convergence
Ieej, — e in C2_g_“, AL — Ak

as proved in Theorem (where also the eigenpairs e}, A7 are defined). As for the non-linear
term, one has, as in the proof of Proposition

(M.YF)? 6112¢5) S 97203 (Y7, 1)2 — 0,

by the assumption on p. To prove that M¢® is a martingale, one has to show that such property
is conserved when passing to the limit. For R > 0 consider the stopping times

mR(Y) = inf{t > 0| (V1) > R} = lminf{t > 0 | (Y, 1) > R} = lim 7a(¥*).
e e—

This sequence is localizing, in the sense that it makes M a local martingale with quadratic
variation

t/\TR (YE)

(M) >t—hm[ / (1462755 ) TLYE, (I265)? 22212 (eI (VL))

ATR(Y) e—0

d
2

+ e (T (VS Teef)) 1) — e 2 5o (TL Y2, (265,222 T2 (eI (Y Tef)) dr]

tATR
- / (Y, &) ds.
0

To conclude that M*®* is itself a square integrable martingale it suffices to observe that:

sup E[(Y;, 1>\2 < 00,
0<t<T

which follows by applying Fatou’s lemma, first over € and then over R, to Equation in the
proof of Propostion [2.4]

Step 2. We conclude by explaining the uniqueness in law of a process Y satisfying the martin-
gale problem of the rough superBrownian motion (in the following as always w €  is fixed, and
we omit from writing it. In particular, all averages are still conditional on the realization of the
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environment). The uniqueness is the consequence of a duality argument. For any ¢ > 0, € C*
we find a process t — Uy such that

(14) E [e—ﬁftw)} _ YOl

Hence the distribution of (Y}, ¢) is uniquely characterized by its Laplace transform. This also
characterizes the law of the entire process (Y, ) through a Dynkin-type argument (see [I8]
Lemma 3.2.5]), proving the required result.

We are left with the task of describing the process Uyp. This is the solution, evaluated at time
t > 0, of the nonlinearly damped parabolic equation

1
O (U.p) =H(U.p) — §(U~<p)2, U = ¢,

where we consider the solutions in the mild sense, namely

1 t
Upp = e — B / eI (Up)? ds,
0
as constructed in Lemma To obtain Equation consider some ¢ > 0 and a process

Y € C([0,T];CC) of the form

t
) T
0
with f € C([0,T];C¢), 1o € C-. Approximating f through a piece-wise constant function in time
f and approximating both f and ¢ via a finite number of eigenvalues in view of Lemma , and
using the continuity of the semigroup as in Equation , it follows from the definition of the
rough superBrownian motion that for 0 < s < ¢:

(Yo ts) — (Yo, ) — /0 Y ) dr = ML ()

is a continuous martingale with quadratic variation

(V1)) = /0 Y d? ) dr

Now we apply this observation together with Itd’s formula to deduce that

[0,t] > s e~ YsUi—s9)

is a martingale on [0, t]. In particular, this implies Equation and conclude the proof. [l

The following result states the well-posedness of the dual PDE to the rough superBrownian
motion. We will not provide a proof, since it is identical to [45] Proposition 4.5]. The proof is
essentially based on an a-priori L™ estimate and the regularization properties of the Anderson
Hamiltonian (cf. also the proof of Lemma [6.4).

Lemma 2.6. Under Assumption [2.], fit w € Q. For any ¢ > 0, € C*, time horizon T > 0
and ( <2 — %, there exists a process (t,x) — (UL@)(x) such that U¥p € C([0,T];CS), where
1

t
U;)(P _ et’H(w)(p _ 2/ e(t_S)H(w)(Ungp)Q ds.
0

3. SCALING TO FKPP

As in the Section [2 throughout this section we fix one realization w of the environment and
work conditional on that realization. Unlike Section [2] the probability space remains fixed.

The first step towards the scaling limit is to restate the martingale problem of Lemma [I.3]in
the current setting. The proof is an immediate consequence of the aforementioned lemma.
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Lemma 3.1. Under the assumptions of Theoremﬁx any w € Q. For all p € LY(T%), the
process t — (X5, @) satisfies

(15) <Xf,s(w)790>=/ (Ae(X7 (W), ) + (I [E(w) (X7 () — (X7 (w))*)], ) dr + M (),

where ME(p) is a centered square integrable martingale with predictable quadratic variation

t
(16) <M€(s0)>t=€"+d_2/0<(1+SE(W))H5X5(W),(HESO)Q—?HE(W)Hs(Xf(w)SO»

2
+ (X7 (@)9)) 7 1) = (se(w) (X7 (w)?, (Hep)® — 20T ()L (X (w) ) dr-
Now we are able to show tightness for the process.

Proposition 3.2. Under the assumptions of Theorem [1.16 fix any w € Q. Fix T > 0 and «
such that

ae(0,1/2)  ifd=1,

a € (0,n) if d=2.

The sequence {s + 1. X (w)}ec(0,1/2) is tight in the space
L*([0, T); BS.5)-
In addition, the sequence {s — X&(w)}eeq1,1/2) is tight in D([0,T); M(T?)), and any limit point
lies in C ([0, T], M(T?)).
A crucial step in the proof of Proposition [3.2)is a compactness criterion due to Simon, which we

recall for convenience. Here the space W2¢([0,T];Y) C L?([0,T];Y) is defined by the Sobolev-
Slobodeckij norm

T = SO )
wacomir = Wlsgoayry + ([ [ P E R avar) ™

Proposition 3.3 (Corollary 5, [48]). Let X,Y,Z be three Banach spaces such that X CY C Z
with the embedding X C Y being compact. Then also the following embedding is compact, for
any s > 0:

LP([0,T]; X) nW=([0,T]; Z2) € LP([0,T];Y).

Now, we pass to the proof of tightness.

Proof of Proposition[3.2 Since w € § is fixed throughout the proof, we omit writing it, to lighten
the notation. Tightness of the sequence X¢ in D([0,T]; M(T?)) is an immediate consequence of
the bound 0 < X7 < 1. To show that moreover any limit point lies in C([0,T]; M(T¢)) notice
that for any ¢ € C(T4)

d
(XF ) — (X, o) S gllee,
so that the maximal jump size is vanishing as ¢ — 0. The continuity of the limit points follows
then through [23, Theorem 3.10.2].
Therefore we now concentrate on proving the tightness of the sequence II. X:. For simplicity,
let us define the parameter A\ as follows:

{Ifdzl, n=1 = set A=0,

(17)
Ifd=2, n=0 = setA=m.

Our aim is to apply Proposition with
X =B, Y=DB§, Z=DB,,

for appropriate o/ > a > o”.
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Step 1. First, we derive a uniform bound for the second moment of the BS, norm (this in
particular implies boundedness of the sequence I1. X¢ in L?([0,T); Bg5)):

(18) sup sup E|IL XtHBa < 00.
£€(0,1/2) 0<t<T

To obtain this bound it is convenient to prove the following, stronger bound. Uniformly over
s €1[0,T]

(19) sup E[ITXF (3 7] S 1+ X5 3.
s<t<T )

where {F;}i>0 is the natural filtration generated by X¢ (we omit the dependence on ). We
state the bound with the conditional expectation, since in this form it is simpler to derive, via a
Gronwall-type argument. For brevity, fix the notation

X° =1II.X°.
By the martingale representation of Lemma [3.1] and a change of variables formula
t t
X; = A [ OARE (R - (6 dr [ T
s s+

where the last integral is understood as a martingale measure (cf. [52]). However, for the purpose
of the proof it is sufficient to consider its one dimensional projections, that is for ¢ € C(T%)

t t
(X7, 0) = (X5, e790) 4 / (M2[E(X5 — (X5)2)], el A0y dr + / AME (Toet=DAs ).
S s+
The B3y norm is estimated by

B g, ] & IR, + 8| [ et me ek - o) ar|

]
Bs,
t 2
+E[H/ Heell A dM;
s+

7.

{e%
B3,

An extension of the paraproduct estimates of Lemma to the By scale (see [3, Theorems
2.82, 2.85|) guarantees that

17%18g, <20 f© flBg, + If © fllBg, S Ifll=lfllBs,,

and through the Schauder estimates of Proposition the L> bound on X~ and the fact that
& is smooth one obtains

| [ e igee: - oo an

2

7€
.7:5:| S |t—s| sup E[HXL‘HQBgJIS}
Bg, ssest |

As for the martingale term, by the definition of the space Bf'; one has

m= s [ [

2 2

t
52)‘E[H / e =74 d Mg AME (AT KY)
s+

]:S] dz.
B3,
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Using the predictable quadratic variation computed in Lemma [3.1] one obtains, uniformly over z

t 2
(20) g”E[ / dME (e AT KY)

_l’_

7|

t
= 5”1@[ / (X7, (1s.) [([2e A K7)? 22 (A KT (X e A K T)])

S

+ (Mo (XETe A K 2)) % 1)

— (X% s [(m2elt A )2 2112 (el A KL (X ST A K 7)) dr ’ fs}

t
< [ e AR | .
S

since |s|, | X¢|] < 1. Now, for ¢ € R, for example via the Poisson summation formula in Lemma
and a scaling argument on R%

HKijc'f 5 27¢

and therefore by the Schauder estimates of Proposition and Lemma for v € (0,1)
[Tl =mA K| estr S (t—r)~22¢.

For clarity, dimension d = 1 and dimension d = 2 are treated separately. In dimension d = 1
choose —% < (< —«aand fix y € (0,1) such that ( +~ > % Then, by Besov embeddings, one
has

T T4 7|72 < [Tel DA KT |72 < IIHse(t_T)AEKfHZlm < (t=r)772%.
In dimension d = 2, where = A, choose k > 0 such that & < 7 — 5k and set v =1 — x. Then
Lemma and Besov embeddings guarantee that

I [TLee ™Ak ] o < ) [Hee® ™A KT [ oomian S €[ DA KT [l o

I+n—3k
< 5’7*/@Hnae(tfr)AsKjﬂ,ﬂHCll_nHK

n—k (t—r)Ae -z
S MLt

et - G [l gmmsn S €777 (= r)22 (=5,

In both dimensions, substituting the estimate into (20]) one obtains

?| 2

For sufficiently small, deterministic 7%, chosen uniform over all parameters, inequality is
shown for all (t —s) < T*. Due to the presence of the conditional expectation, one can exploit
this argument for general ¢, s via a Gronwall-type argument. Indeed, to extend the estimate to
2T, observe there exists a C'(T™) such that

t
/ I.et~mAe e

S

fs] N s|1_7.

«
B34

swp {7, 7)< o) (1 s E(ILA g, 17
tels,s+2T*] ’ t€(s,s+1%] ’

< o(T%) (1 +or)(1+ E[Hnexguggg}))

Iterating this argument yields the bound for arbitrary 7.
Step 2. The next goal is a bound for the expectation of an increment. For this reason fix

0< B <a,
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with « as in Step 1. We shall prove that there exists a ¢ > 0 satisfying:
¥ %E12 4
(21) E|IX; - X2 | S 1= sl
Indeed, arguments similar to those in Step 1. show that
E[IX; - X2 | <E[IX; — =42, | + B[4, - X%, |
32,2 BQ,Q BQ’Q
€ —8) A 7E||12 _ €2
SE[IX — XL, |1 sl RIS,
1— <12 — BT (|2
St = s BRI, ) + [t — 52T EXC g
2,2 5

where the penultimate step follows from Lemma This is enough to establish .
Step 3. Notice that and together guarantee that

€12 €

sup B\ X122 0.21,85,) + 1K Iwecqomyns,y| < 0

£€(0,1/2) LA0T]:Bs ) W2<([0.T];B; 5) ’

with ¢ as in (2I). Note that this implies tightness in L2([0, T'; B§"2) for any o < «, which is still
sufficient for the result, since « varies in an open set.

O

At this point, the last step is to prove that any limit point satisfies the required martingale
problem (in d = 1) or solves the required PDE (in d = 2).

Proof of Theorem Theorem [1.16. As in all previous cases, we fix w € 2 and do not state explicitly
the dependence on it. We treat the drift and the martingale part differently.

Step 1. We start with the drift, which is the same in both dimensions. Since Let X be any
limit point of X in C([0,T]; M(T?)). The previous proposition guarantees that any such X lies
almost surely in L2([0, T7; B§,) for some o > 0. In addition, through Skorohod representation,
we can assume that II. X — X in L?([0, T]; BS,) almost surely. In particular, for ¢ € C>=(T%),
defining

t
NF = (Xeo,0) — /0 (X r0AAg) + (E(Xs — X2), ) ds,

and since regarding the nonlinear term one can estimate:

t t
/ / |X2 - (TI.X°)?|dads < / / 2|X, — M.X°|dzds S || Xs — T X || 12 (jo,7y;85,)
0 JTd 0 JTd ’

and applying Lemma [5.5] one has almost surely:

t
Nf = lim [<ng5,0, O = [ (XG0 + IS = (102 12 ds

Step 2. Now we prove that N is a centered continuous martingale, with quadratic variation
depending on the dimension. In d = 2 the quadratic variation will be zero and hence N¥ = 0,
proving that the limit is deterministic (conditional on the environment). Since N;*? is a sequence
of martingales, by Lemma the fact that also N/ is a martingale follows from the uniform
bound of Equation (the continuity of N¥ is as well a consequence of that proposition). The
quadratic variation of N*¥ is given by:

(o9, = & / (1 50) T X, (IT2)2 2112 ()L (X5 ¢0))

+ <(H5(X5H690))27 1>_<35(H6Xr8)2a (H?gp)z—QHg((p)He(XﬁHE(p» ds,
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with A as in Equation . Passing to the limit one has:

e—0

t t
lim (N°9); = Ly_) /0 (X0 0? — 2X,0%) + (X2, 6% ds = 1oy /0 (X,(1 = X,), 2 ds.

This is of the required form for Theorem [I.I6] Moreover, a localization argument guarantees
that that (N¥); = lim._,o(N®¥),, thus completing the proof.
O]

4. LONG-TIME BEHAVIOUR OF LIMITING PROCESSES

This section is dedicated to proofs of statements on the long time behaviour of the limit-
ing processes. In subsection [{.I] the persistence of rough superBrownian motion is discussed.
Subsection [4.2] covers the long time behaviour of Fisher-KPP equation in rough potential.

4.1. Rough superBrownian motion. In this subsection we briefly discuss the persistence of
the rough superBrownian motion on a torus, providing a sketch of the proof of Proposition [1.11]
The proof is very similar to the proof of [45, Theorem 2.20], but we sketch it here as this result
is crucial for our biological motivation. We begin by recalling a result on the behaviour of
the eignevalues of Anderson Hamiltonian. For the proof in dimension d = 2 we refer to [2,
Theorem 1.7], whereas the bound in dimension d = 1 can be deduced from results in [§], see also
[37, Theorem 2.

Proposition 4.1. Fiz (Q, F,P) as in Assumption. Forw € Q let A\1(w) be the first eigenvalue
of Anderson Hamiltonian H(w) as defined in Proposition [1.23. Then there exists a pair of
constants C1 > Cy > 0 such that for x > 0 large enough

e O < P(A\ > ) < g Cra®™"2

Proof of Proposition[1.11 Let Y; be a rough superBrownian motion on a torus. For w € Q Let
(M (w), e1(w)) denote the first eigenvalue-eigenfunction pair of the Anderson Hamiltonian H(w),
with [le1(w)|[z2(pay = 1. According to Theorem e1(w) is strictly positive. By Proposition
P(A; > 0) > 0. Hence it is sufficient to prove the claim for all realizations w such that A;(w) > 0.
Under this assumption, by the martingale representation of Y;(w) observe that

Eu[(Yi(w), et (@))|Fs] = (Ye(w), ™ Wer(w)) = (Yi(w), e =N Wey (w)),

which shows that E(t,w) = (Y;(w), e1(w)) is a martingale. To see that the variance of E(t,w) is
uniformly bounded in ¢ notice that

E[|E(t,w) — B(0,w)]] 5/0 M) (e, (w))?) (0)ds

t
< Jle1(w)]| o / e M Ws W) (=M @)s e, (1)) (0)ds = [ler (w)]| pee / e M3 (w,0)ds < 1.
0 0

By the martingale convergence Theorem E(t,w) converges as ¢ tends to infinity to a random
variable E(w). Since E,[F(w)] = E(0,w) = e(w,0) > 0, the random variable E(w) is positive
with a positive probability. The conclusion for general functions ¢ now follows by an application
of Lemma O

4.2. Fisher-KPP. Here we prove Proposition dividing it in two steps, according to the
dimension.

Lemma 4.2. Consider a solution X to the stochastic FKPP equation as in Definition 1.14] in
d=1. P x P*-almost surely, there exists a finite random time T such that X. =1 or X, = 0.
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Proof. Consider w € € fixed. For convenience, we omit the dependence on w in the following.
For n € N define X{* = X;4,. Through Schauder estimates similar to the ones in Proposition [3.2]
(but here we do not have a jump process, so one can apply the classical Kolmogorov-Chentsov
criterion), one can show that the sequence X™ is tight in C*([0, T; B 5) for any 7' > 0 and some
k > 0. It is easy to see that any limit point X is constant in time. Moreover, up to changing
probability space, one can assume that almost surely X" — X € C*([0, 2]; B5,), with X e BS 5.
First, we prove that either X = 1 or X = 0. Assume by contradiction that 0 < X < 1 is
not trivial. Up to changing probability space once more, one can additionally find a Brownian
motion B such that for z; = (X4, 1) and o, = fo Xs), 1) ds:

2t = 20 —I—/ (€, X5(1 — X,))ds + By,.
0

Note that z € [0,1]. Hence if (£, X(1 — X)) # 0 (and since o; =~ t), the law of the iterated
logarithm brings us to a contradiction, since we would have lim; o 5 # 0. Assume then that

(€, X(1— X)) # 0 and consider the process y = \/z;. By Ito’s formula:

m :y0+/() ;<53Xs(1Xs)> o 1<1aXs(1 *Xs)> dS

Ys 4 y3

P10, X(1 - X
+/ 3 EXMZX) A XA X)) B,
0 Ys
The last term has quadratic variation:

/t;<§, XS(;— Xs)>2 <17Xs(1 B Xs)> ds 5 t.
0

2
s

Then again the law of the iterated logarithm would imply that lim; ,. y: = —o0, which again
contradicts y; € [0,1]. Hence, almost surely X = 0 or X = 1. The same argument proves that
if X = 0, then this point is reached in finite time. A symmetric argument proves the result if
X =1 ]

Lemma 4.3. Consider the solution X to the random FKPP equation as in Definition
ind = 2. For every w € Q such that M\ (A — £(w)), \(A + &(w)) > 0 and assuming that
Xo # 1, Xog £ 0, limy_oo X(w) = X(w) € C* for any a > 0, where the latter is the unique
nontrivial (i.e. X #Z1,X # 0) solution to the equation

AX (W) + (W)X (w)(1 — X (w)) =0.

Proof. We fix w as required and omit writing the dependence on it. The statement is then proven
in [31, Theorem 10.1.5] (that the convergence holds in C* for any o > 0 is a consequence of the
smoothness of the noise and the a-priori estimates in L for the solution), but to be clear we add
some comments. First, the author proves the result only for Neumann boundary conditions, but
the extension to the periodic case follows with exactly the same argument, mutatis mutandis.
Second, the author proves non-triviality of the limit for the equation

AX + NEX(1-X) =0,

for large A, assuming that de x)dx < 0. The latter condition can be replaced by the fact that

A (A =€) > 0, while the first one is equivalent to A; (A + &) > 0. Indeed, the precise condition
is that A > A¢ and the latter, as in [31, Lemma 10.1.2], is the bifurcation point at which the
eigenvalue A (A + X&) =0, so A\ < 1. O

5. SCHAUDER ESTIMATES

This section is devoted to the proof of Theorem [I.2T]and other similar results. Since the central
object in this section, the semidiscrete Laplace operator A, is defined through convolutions
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with characteristic functions, the first result collects some information that will be useful in the
upcoming discussion.
dyo

Lemma 5.1. Let (Dyp); = $£ and (D%*p); j = % indicate the gradient and the Hessian matrix
[ Chasat]

of a smooth function ¢: R — R respectively. Recall that x.(k) = X(ek) = Fra(e~Lip. o)) (k).
Then:

DR(0) =0,  D?x(0) = —(27)*wold,

with
L d=1 L d=2
vp=-— in d= vp=-— 1in d=2.
07 12 ’ 07 4r
In particular, for any choice of constants ¢ < 1 < C, there exists a k(c,C) such that
e (k)

c <C, Vk: |kle < k(c,C).

~ —(@m)wlkl* T

Finally, the decay of X can be controlled as follows for any n € N and iy,...,i, € {1,...,d}:
d"x(k)

da:il ce dl‘in

The proof of this result is deferred to Section Instead, we pass to the central result of this

section, from which all other will follow. Recall that A. is a Fourier multiplier, therefore also

the exponential e*4< and the resolvent (—A. + A\)~! (for A > 1) are naturally defined as Fourier

multipliers. As explained already in other points, the action of A. is different on large and small
Fourier modes. The next result provides the correct choice for this division.

<o (1+HE) 2

Proposition 5.2. There exists a constant kg > 0 such that the following holds. For any p €
[1,00],cc € R and j > —1 there exists a ¢ > 0 such that uniformly over e € (0,1/2),t > 0,5 > —1
and ¢ € Cy' one can bound:

1A Al Loray S 27 |lglleg, if 2% < ko,

(22) - -
HAjAaSOHLP(Td) Se 2 HQOHcg, if 27 > Kog.

And similarly for the exponential:

_ 25 .
(23) HAjetAE(PHLP(Td) Se 2 “elleg, for 2'e < ko,

—cte~2o—aj ;
1A @l o ray S € 27V lgllcg, for 2e > ko,

and for the resolvent (uniformly over \ > 1):

1A (= A+ 2) 7l 2> pleg, for Ve < ko,

™) S 5% 1A
1
-1 _
[A;(=A: + A" @llppray S mQ
Proof. Since all of the estimates follow the same pattern and the first one is particularly simple,
we will mainly discuss the proof of Inequality , pointing out how to adapt the calculations
to the other cases. We also restrict to the case

(24) ' ‘
aJHSDHCpo‘a fOT’ 27e > K0,

J =0,

since the case j = —1 is similar but simpler. We begin by restating the inequalities for distribu-
tions on R%. This is useful because on the entire space we can use scaling arguments. Then we
examine the behaviour on large and small scales separately. The precise separation of modes is
chosen based on Lemma 5.1l
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Step 1. To restate the problem on R? we extend distributions on the torus periodically. Let
7: S'(T?) — S'(R%) denote the such periodic extension operator of distribution on T¢ to the full
space. Its adjoint is the operator 7*: S(R%) — S(T), given by

To() =D p(-+k).
keza

We observe that 7(A-p) = A.7(p), where with a slight abuse of notation we have extended .A.
to act on distributions on the whole space (simply through Equation (4) - and note that it is
still a Fourier multiplier, since for ¢: R - R, A.¢ = ]:Hgdlﬂngdgp). Similarly, by the Poisson
summation formula (Lemma [B.1)), m(Ajp) = Ajm(y), the latter defined as the Fourier multiplier
Ajm(p) = ]-"Hgdlgjf&dw(ap). As a consequence of this last observation, for any a > g (or a >0 if
p = 00):
1A () Lo e, ya) ~ap 1850l Lo ey,

where || fl| Lp(ga,(ya) = [1F(-)/(1+] - ]2)%HLP(R¢1). Therefore in order to show it is sufficient to
show that for all cp € S’'(R?) and setting a = d + 1:

—et02i )
14" ol| 1o ra (yarr) S €% J|’Aj90HLP Rd (ya+1), for 2e < ko
||Aj€tAESOHLp(Rd’<,>d+1) Se —cte ||A]90||Lp Re, (-)d+1Y; for 27e > Ko

The same holds for and , with the natural changes. Hence, from now on let us consider
all functions and operators are defined on R?. Let 9 be a smooth radial function with compact
support in an annulus (i.e. ¥ (k) = 0 if |k| < ¢; or |k| > ¢ for some 0 < ¢; < c¢2) such that
pY¥ = p. By Young’s inequality for convolutions and by estimating uniformly over z,y € R¢

d+1
I+~ S A+ (A +lz -y,
one obtains:
1€ 0]l ogra pyarty S 1 Fgd (€752 11 e -0y |1 A0 po(ayasry-

In this way, through a change of variables, we reduced the problem to a bound for

(25) /R (14275 P) 5 | P [Py ) do

(and similarly for and ., with efVs replaced by 9. and (=1, + \)~! respectively). Before
we move on, we ﬁnally observe that by Lemma 5.1} there exists a s > 0 such that for 27¢ < rg:
1 J:(27k) 3

- < < .
3 S TP Vk € supp(¢)

Step 2. We now estimate on large scales, i.e. 2/e < kg. In this case the term can be
bounded by:

e R

d
< swp [T PR + 3T [ e M)

kesupp(v)) i=1

To bound the term involving derivatives we observe that:

D[td(2")](k) = f(2ek)t2|kl,  f(k) = 2x(k)
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where f is smooth on R%, again by Lemma In particular, since 2Je < 1, taking higher order
derivatives one has for any n € N: ’8,?1 [t29€(23-)]’(k:) < t2% for k € supp(¢). Now recall Faa di
Bruno’s formula:

=Y C({my.n) @t (g li[( 9)",

{m}

where the sum runs over all {m} := (my, ..., m,) such that m; +2mgo+---+nm, = n. Applying
this formula and by our choice of kg, there exists a constant ¢ > 0 such that:

d
Sup ‘etﬁg(2jk)w(k)| + E ‘8ifd+1)etﬂg(2jk)w(k)” < e—§(2n)2uot22j(1+t22j)2(d+1) < e—c(t22j).
kesupp() i—

This concludes the proof of the large-scale bound in . For the resolvent equation one similarly
has to bound:

i d
kesil;)g(iﬁ) ‘ _196(125.];)) + /\‘ i ; ‘aii(dﬂ) _ﬁew(g;)‘i‘ A H .

Here as before, for the derivative term one has, through the choice of kg:

1
mn_ - 00 <
8’”—195(1-@)4—)\ NZ -

SOME

{m}

14+mi+--4my N N
[1(2")
j=1

Lmy 4+ Fma
(22j)m1+'~+mn

2 27T 21/022] + A

1 < 1
%(27r)2y022j A2 4N
as requested for (24). The estimate follows similarly. ‘
Step 3. We pass to the small-scale estimates, namely for j such that 27¢ > k. Here we will
need tighter control on the decay of x(k): since x is not smooth, the decay at infinity is not faster

than any polynomial and is quantified in Lemma . We now estimate , for s € (d,d+ 1),
by:

([ o) s [0 Jaf 2721 |7 2 [0

Lt fz])* ) sera

d
eI e + (1= A)Fe = EIp() || pagray + D 2D G =@ ()| e,
i=1
for any ¢ € (1,00). As for the first term, since |x(k)| < 1 for k # 0 and it decays to zero at
infinity, up to reducing the value of ¢ > 0 we can assume that:

D:(27k) < —ce™2
This is sufficient to show:
\Ietﬁs(zj')w(')HLw S e—cta*Q,

which is a bound of the required order. As for the second term, denote with H,; and Aj , the
Bessel potential spaces and Sobolev spaces respectively, following the notation of [51], Section
2.3.5], for which the embedding Af,:q C H, holds, it s’ > s. Then since d + 1 > s one has:

11 = A) 30 o= (1= ()| s

e @) yars = D [DeE ()| e,
’ || <d+1
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where we write |a| = aj+- - -+ag for a multiindex o = (as, . .., ag) € N® and D = d"le%‘
Now bounding these derivatives is similar to bounding the last term:

d
Z 27j(d+1) Haz.(d-i‘l)etﬂg(y-)w(') HL°°7
=1

so we concentrate on the latter, which has the added difficulty of containing derivatives of higher
order, counterbalanced by the factor 2/(**1) . Here observe that for 1 < n < 2(d 4 1):

Op 7= @R = gn =1 R o5 (2 k) [0y, %] (2 ek)] - (2e) - (te72).

Iterating the above procedure, we apply Faid Di Bruno’s formula again to obtain

‘27j(d+1)a]?iet195(27k)‘ S ij(dJrl)etq?E(Qﬂk) Z H (a}i—l [QX()[akz)Ad)H ‘ngk . (2j€)€)m£ . (tng)mg.
{m} =1
In view of Lemma crucially:
1
(=10 .
sup |0, 2xX(-)[Ok; X (- S
kesupp(v) 9% PO v 4[|

Hence, as before up to further reducing the value of ¢ > 0:

Haﬁetﬂg(Qﬂﬁ)”Loo < e—cta 29— j(d+1) 2j ZH 2_] —my(d+1)
{m} (=1
< e—cts_22—j(d+1)(Qje)n—(d+1) < e—cts_2

~

since at least one of the elements of the sequence my is strictly positive and since n < 2(d + 1).
This concludes the proof of . Regarding the resolvent, one can follow mutatis mutandis the
previous discussion until one has, as before, to bound:

: || g2+ W( & j(d+1) 1
2.2 [o _WJHH ;2 D op s

Then again, with Faa di Bruno’s formula:

n 1 Lo emy =1/~ tm
8’“i—z9a(2jk)+/\‘5%)—z9g(2ﬂ'k:)ﬂ‘ EHI\% (X)X (e ™ - (7)™

1 1 pmatetmn & 1 my(d+1)
< > [ (—=— 21 g)tme
e }’5—2+)\’ H(1+\2ﬂg|> (2e)

<L it
eT24+ A
Plugging this into the previous formula provides us the correct bound. Similarly one can also
treat the small-scale estimate for . O

The previous proposition motivates the introduction of cut-off operators as follows.

Definition 5.3. Let 1: R — R be a smooth radial function with compact support which is
constant outside of an annulus AR = {x € R%: r < |z| < R} for some 0 < r < R and such that:

T(x) =1, Vz € A}, T(x) =0, Vx € AR.

Define
P. ="(eD), Q. =(1-"0)(eD).



28 ALEKSANDER KLIMEK AND TOMMASO CORNELIS ROSATI

We say that P. is a projection on large scales, since those Fourier modes describe a function
macroscopically, whereas Q. is a projection on small scales. We furthermore will use for
j > —1,5 € Z the notation:
jzet,  iSeh
if there exists a constant C > 0 indepdendent of j, & such that 27 > C (or, repsectively, 27e < C).
The next lemma states that the cut-off operators are bounded.
Lemma 5.4. Consider « € R andp € [1,00]. For T as in Deﬁnition one can bound uniformly
over e € (0,1):
1Peolleg S llellegs  1Qeelleg < llelleg-

Proof. Let ﬁ(x) = fﬂgdl_l(m). By an application of the Poisson summation formula (Lemma )
and a scaling argument:

ITeD)¢lleg = sup 2 (Fd (e = Ajelle S 1FRd ULt ray leolleg
o

S e eI galieles S llelleg-
The same argument shows that (1 — T(a-)) is bounded. O

5.1. Elliptic regularity. In this subsection we prove Theorem [I.2I] The theorem is a direct
consequence of the lemma and the proposition that follow.

Lemma 5.5. Fiz any a € R,¢ > 0,p € [1,00]. Uniformly over ¢ € C' and € € (0,1/2):
HAEPEQPHCI?*Q N ”SOHC;;‘-
Moreover, as € — 0
Ao — vgAp in CI?‘_Q_C,
where

1 1
Y= 15 for d=1, VOZE for d=2.

Proof. On large scales, Proposition [5.2] and Lemma [5.4] implie that
[AP=pllea— S Peplicg S llellieg-
Moreover on small scales the same results guarantee that for any ¢ > 0:

[QcApllg-2-c S &7 sup. 2107279114, Q.¢l|1r S ¢l llcg
jRe~
which tends to 0 as € tends to 0 if ¢ > 0. Combining those two observations provides the first
bound and guarantees compactness in Cp’ 2= Convergence follows since, by Lemma

XP(ek)—1

FralA:Pepl(k) = T(ek) p(k) = —(2m)*volk[*¢(k) = FraloA¢] (k).

e2
]

The regularity gain provided by the operator A. can be described as follows (for the proof of
Theorem we require the result only for 6 = 0).

Proposition 5.6. Fiz any o € R, § € [0,1] and p € [1,00]. Uniformly over A > 1, € (0,1/2)
and ¢ € Cy the following estimates hold:

)\_6HPE(_A€ + A)_l@“cg+2(1—5) + /\_55_2(1_6)”Q8(_-A€ + /\)_ISOHCI?‘ S H‘PHC;‘-
Moreover, as € tends to 0,
P-(— A - /\)ﬂgo — (A — A)flcp

where the convergence s in C§‘+2_C for any ¢ > 0 and vy is as in Lemma .
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Proof. Consider the large-scale estimate. Proposition [5.2] and Lemma [5.4] guarantee that for
: —1
JSe

1A;Pe(=As + X)) ollze S 27 Qeplleg < 27VTUNT g o,

~ 221 4+ )\
which is a bound of the correct order. All other bounds follow similarly, and the proof of the
convergence is analogous to the one in Lemma [5.5 g

5.2. Parabolic regularity. In this subsection we study the regularization effect of the semi-
group e=. This discussion requires certain spaces of time-dependent functions, which we in-
troduce in the following. Let us fix 7' > 0 an arbitrary time horizon. All function spaces will
implicitly depend on T'. For time dependent functions taking values in a Banach space X the
a-Holder norm (with « € (0,1)) is defined as

fllowr = sup [7@)lla+ sup DTGl
te[0,7T t,5€[0,T] ‘t—8|a

It is convenient to incorporate a blow-up at time ¢ = 0. This reflects the fact that the regular-
ization of the semigroup occurs only at strictly positive times.

EC ={f:(0,T] = C [ flleneg = Sup N f(@)lleg < oo},
€10,

and one can combine the previous spaces in the following way:
2 ={f € &C | Ifllgye = fleveg + It = 7 f (@)l arapp < 00}
Now we state the main result of this section, the parabolic Schauder estimates.

Proposition 5.7. Fiz p € [1,00],T > 0,7 € [0,1) and a € (—=2,0),5 € [a,a+2) N (0,2).
Uniformly over ¢ € Cf and f € E%C;“ and locally uniformly over T > 0:

(26) [t = Pee ]| yo-aes S IP=glleg,
P

(27) Ht o / P eli-9)A: (s)ds
0

In addition, let (1, € [0,1) such that (14+C2 < 1 and 01,602,093 € [0, 1] such that §1+02+03 = 1.
Then:

prat2 5 ”PEfHE”/Cg-
P

(28) £ 420, ey S 2 ety
! 262 é.
(29) Ht — t”/o =949 _f(s) ds’ e S e T Q: fllevea-
P

with constants independent of f,p,T.

In many steps the proof mimics proofs in [26] and [28], to which we refer the reader for simple
proofs of classical Schauder estimates in the setting of stochastic PDEs.

Proof. Step 1. We begin with large scales, namely . By Proposition

. _492j )i
up 2% AP gl oy S sup e 20 Py
j>—1 Jj=-1
= —ct22 (1625 22 <5
=t 2 §>11ple (t247) 2 HPaQOHC;;Nt 2 HP6<PHC;}-
>
Therefore

[t — PsetASSDHg(/B—a)/zcg S ||73590\|Cg-
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Similarly, for (27)

sup 24| / Byl AP ds| S 1Pl sup 2 / e (1) 7 ds.
0

j>—

which can be bounded by ||’Psf||g%cz,)l by the same arguments as in the proof of [20, Lemma A.9].
We still need to address the temporal regularity for both terms. Again, Proposition leads to:

et Peelogen = || [ AP

d
(30) Lo

t
< / R | Paglen ds ~ 13 [ Puglcs.
0

To conclude the proof of both and it is now sufficient to follow the same steps as in
[28, Lemma 6.6].
Step 2. We turn our attention to the small scale bounds and . Fix (; = 01 = 0 first.

With calculations in the same spirit as in the Step 1, we arrive at:

, o L
1Qee"pllcy = sup 299)18; Qe |l oray S €= 1 Qetplicy S (te7?) 11 Qe¢llcg-
e

For the inequality , if 63 > 0 the spatial bound follows from the previous result. If 3 = 0,
we observe that

| [ @uet-ot s

The last bound in the above inequality is obtained in the same spirit as [20, Lemma A.9]. Namely,
choose A € (0,t/2) and split the integral at time A\. We note that

A\ B A At
/ e % T(t—s)Vds < / (t—s)Vds =t 71 / (1=s)7ds StT7A,
0 0 0

since, as A/t < 1/2, 1—(1-X/t)3=7) < \/t. We then observe that for any ¢ € (0, 1),

t
—cse—2 — —
o S0 lerey [ (t-9) 7 ds S Qe
0

P

t t 1
/ 6—05872@_8)—7 ds < / (35_2)_(1+9) (t—s)™7ds < t—Y—e2(1+0) / 3—(1+9)(1_8)—7 ds
A A At

< =vg2(14e) \—e,
If €2 < t/2, choosing A = €2 provides the result. Otherwise, one simply notes that
t
/ e (=) TV ds ST S e
0

Step 3. We now investigate the full temporal regularity for and , that is, we allow for
(1,01 > 0. We first observe that for § € [0,1)
(31)

t t
(41 Quplig =] [ e Ac@up ]|, S10upley [ (s272) % ds= | Quplepe™6 eI,
0 ) 0

For 6 € [0,1) and ¢ = (;+(2 € [0, 1), the temporal regularity of the first terms can be established
via
£ Qs e Quppllca S (1°—s)t ™2 (| Qupllcs + 5| (e —Td)e 4 Q.o ca
S (=)t 22| Qo + s (t—s)' 02O HeSAEQsSOHCg
S (=)t 222 4 (t—9)' 220 DX||Qupplcy S (t—5)e”?[ Qe

where in the last step we set § = 1—(; and notice that (£¢—s%)t=% < (t—s)%.
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The bound for follows similar pattern. For simplicity write V(t) = fg et=9)A<Q_f(s) ds.
Then

[0V (6)=57V (s)leg < (¢ =) [V ()llcg +57|

t
[ ] AV )l
s p

The only term for which the estimation does not follow the already established pattern is the
one in the middle, for which we observe that

t t
s’YH/ e(t—T)As Q.f(r)dr o < S’y/ ((t_r)ng)féz,,ﬁ'y dTHQEfHSWCg

P

1

1
< Qe f lgngge?e st / (A=) 027 dr < [ Qo flercpe?21—2 / (1—r)~% dr

s/t s/t
S1Qefllercge™t' % (1=s/1)' % < [|Qcf levcge® (t—5)' " < [|Qefllency ™ T (t—5)",
which completes the proof of the proposition. O

The following result is essentially a by-product of the previous proof, but deserves a separate
statement, for later use.

Lemma 5.8. Consider a,, 3 € R and p € [1,00] with v := a— € [0,2]. Then uniformly over p:
7
(e —Td)ellps < t2 ey

Proof. The proof follows from Proposition Indeed, Equation implies that for j < g1
one has: ' L 3
297)|(eM —1d)Ajpllr S 227 Ajellcy St [llea-

While a slight modification (to LP spaces) of guarantees that for j > ¢!
27| (e —1d)Ajpllie S 1227° 7| Ajpll e S 1227 Ajellr S £ | 0lleg -

~ ~ ~

This concludes the proof. O

6. SEMIDISCRETE PARABOLIC ANDERSON MODEL

This section is devoted to the proof of Theorem This theorem is an approximation result
for the continuous Anderson Hamiltonian in dimension d = 1 and d = 2. Before we proceed, let
us collect some basic ideas of the proof that will follow. First, recall that (see Appendix |B)) given
two distributions ¢ € C, 1) € C?, their product can be decomposed as 1) = QY +pPOV+1PS ¢,
where the central term ¢ ® 1), called resonant product, is well-defined if « + 5 > 0 (while both
other terms are always defined).

The proof of the theorem concentrates on the two-dimensional case, since here the resolvent
equation (—19pA + ANu = (u — o0lyg—9})§ is a singular stochastic PDE, in the sense that the
expected regularity of u, namely C!=%, for any x > 0, is not sufficient to define the product
with the distribution &, of regularity C~!=* (in d = 1 the product is still well-defined and the
discussion that follows is not required). In the construction of the Hamiltonian in d = 2 we
follow the results in [2] that rely on paracontrolled calculus. In a nutshell (we refer the reader to
[26] and [28] for a more in-depth discussion), this approach follows the Ansatz that the solution
u to the previous equation is of the form u = u' @ X + uf, the previous being a paraproduct
(see Appendix with X solving (—pA 4+ M) X, = &, and uf € C'** (we will call a u of this
form paracontrolled). This should be interpreted as a “Taylor expansion” in terms of functionals
of the noise, and the reason why the rest term is expected to be of better regularity is encoded
in the concept of subcriticality, introduced in [29]. Now, for paracontrolled u the previously
ill-defined product can be rewritten as ué = (v’ © X)¢ + uf¢. While the last term is now well-
defined, a commutator estimate (see Lemma guarantees that the resonant product can be
approximated as (v © X)) ®@& ~ u/(X, ©&). The latter resonant product X ® ¢ remains still ill-
defined in terms of regularity, but one can make sense of it through some Gaussian computations
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(since X is also Gaussian), up to renormalization. By this we mean that the product lives in
two levels of the Wiener chaos. While the second chaos part turns out to be well-defined, the
zeroth chaos is actually diverging. Eventually, one can rigorously define a distribution X, ¢ £
that formally can be written as X, @& —oc0o = X, © & — E[X,\ ) 5], which lives in the second
Wiener chaos and explains the oo appearing in the equation.

In the cartoon we have just sketched, we hope to explain that the theories for singular sto-
chastic PDEs have two critical ingredients. First, some stochastic computations guarantee the
existence of certain products of random distributions. Second, given a realization of these distri-
butions, an purely analytic argument, based on regularity estimates and a Taylor-like expansion
guarantee the existence of a solution to the PDE.

In the present setting we concentrate on semidiscrete approximations of the Anderson Hamil-
tonian, that is we will prove that u as a above is the limit v = lim._, ue, with (= Az + Nue =
(& — cgl{dzz})us. Following the previous explanation we will first prove some stochastic esti-
mates and then pass to the main analytic result. The next definition introduces the space in
which we will control the stochastic terms.

Definition 6.1. Let d = 2 and fix any k > 0. For any ¢ € (0,1/2) we will call an enhanced
noise a vector of distributions

Ea = (587 XE,)\) }/;‘,)\))
or which the following norm s finite:
J g
el i= sup e {l6elc-n-o-5 + IPXeale-o-camg + & 1QXenl -5 }
+ellelle +e Qe Xl + Yz

e

Proposition 6.2. Let (2, F,P) be a probability space supporting a sequence of random functions
£&: T4 - R as in Assumption|1.5. Furthermore, in dimension d = 2, for A > 1, define

Xs,)\ = (_-Aa + /\)71557 & o Hng,A =40 Hng,)\ — Cg,

where
X2 (ek)Xq(ek)

with c¢. ~lo 1
—e(k) + X7 =8

Ce =
kez?
For any k > 0 one can bound in dimension d = 1:

<
sup E[ sup 52”§€HC*%<174)*% +elléellzee] < oo.
€€(0,1/2) ¢elo,1]

And in dimension d = 2, again for any k > 0, with &, = (&, Xen, & 0 12X, )\):

sup E[E.]l. ] < oo.
€€(0,1/2)

Moreover, there exists a probability space (Q,F,P), supporting space white noise § on T, and
a sequence of random functions &, : T¢ — R such that & = €. in distribution and such that for
almost all w € Q:

£.(w) = E(w) in CTEF,
In addition, in dimension d = 2, there exists also a random distribution & o X such that:
Po(—Ac + N7 (w) = (A +X)TLe(w) in C_g+2_”, & <>H§X5,)\ — o X (w) in C".

The proof of this result is rather technical, and for the sake of readability deferred to the
end of this section. Having fixed the correct probability space, we are now in position to prove
Proposition [1.22] We will work under the following convention.
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Assumption 6.3. Up to changing the probability space (Q, F,P), we assume that for all k > 0
and almost all w € § the convergences in Proposition hold true. If d = 2 we additionally
assume that:

sup H|£6(w)’”a,n < 0.
€€(0,1/2)
Proof of Proposition[1.29 The Hamiltonian H(w) has been constructed in dimension d = 1
in [25] (albeit with Dirichlet boundary conditions, but the construction for periodic boundary
conditions is identical) and in dimension d = 2 in [2], for almost all w € Q (with the latter space

satisfying the convention above). In both cases H(w) is an unbounded, selfadjoint operator on
L2, that is:

H(w): D(H(w)) C L? — L2

In particular, in d = 2 [2, Proposition 4.13] implies that the operator H(w) admits compact
resolvents (cf. [25, Section 2| for the analogous discussion in d = 1). Hence the spectrum of
‘H(w) is discrete and the eigenvalues converge to —oo. By a classical result, see [44] Theorem 3.3],
the semigroup generated by H(w), denoted by e is compact. Moreover, as a consequence
of strong maximum principle (in d = 2 such result for singular stochastic PDEs is proven in [9,
Theorem 5.1 and Remark 5.2, the semigroup e is strictly positive: that is, for any non-
zero function f such that Vz € T4 f(z) > 0. Therefore since () is a compact, strictly
positive operator, the Krein-Rutman Theorem implies that the largest eigenvalue of H(w) has
multiplicity one and the associated eigenfunction is strictly positive.

To conclude the analysis of spectral properties of H(w) it remains to show the regularity of
the eigenfunctions, and their density. For the sake of clarity, this part of the proof can be found
in Lemma [6.4] below. O

Lemma 6.4. Under Assumption[6.3, fir w € Q. Consider the Anderson Hamiltonian H(w) as
in the previous Proposition. Define the domain:

D,, = {Finite linear combinations of {ex(w)}ren}-

Such domain is dense in C(T?) and D,, C c25x for any k > 0. Moreover, for p € C* and
¢ < 1 there exists a sequence p* € D,, with limy,_, ©* = ¢ in CC.

Proof. Since w €  is fixed, we avoid writing it to lighten the notation. As the statement
regarding the approximation of ¢ in C¢ implies density in C(T¢) we also restrict to just proving
the latter. First, we require some better understanding of the parabolic Anderson semigroup.
Here we make use of some known regularization results.

Step 1. Consider the operator M as in Proposition [[.22} Taking an exponential one can
construct the semigroup:

et L2(T9) — L*(T9).

This semigroup inherits some of the regularizing properties of the heat semigroup, namely, for
T >0 and p € [1,00] it can be extended so that:

(32) sup 7]l ellca < llellee
0<t<T P

for a and S satisfying:

a—pf d d

5 ﬁ+2>§, oz<2—§, a > 3.
The first constraint is essentially identical to the one appearing in Schauder estimate (cf. Propo-
sition , the second one guarantees that the product e'®¢ - € is a well-defined product of
distributions, while the third constraint is due to the fact that [} e(t=5)2¢ ds has always worse
regularity than 2 — %. We will not prove these results: instead we refer to [45, Proposition

3.1] and the reference therein (the cited proposition is set on the entire space, with the added

v >
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complication of weights at infinity. Such case contains the current setting by extending the noise
periodically). The same results guarantee that in the case § > 2 — %l and for ( <2 — % one has:

(33) sup Jle™ o]l oc < llllqe-
0<t<T P P

Step 2. Applying iterativrly Equation and Besov embeddings implies that e, € c-5—r
for any x > 0. Hence the embedding D, C C2=57" is established. Now we prove the statement
regarding the approximability of ¢. For any ¢ € C*° and ( =1 — k < 1 (for some k£ > 0) one

has:
t

1
lim = | eMpds=¢ in CS.
t—0+ 0

This can be seen as follows: Equation implies that

1 t
n /0 ety ds

for (< (' <2— %. This guarantees compactness in C¢. Projecting on the eigenfunctions e, one
sees that any limit point is necessarily ¢. Hence fix any € > 0 and choose t(¢) such that

sup
0<t<T

< 00,
c¢’

€
< =

1 /t(e) »y
— erods —
H t(e) Jo cc 2

Define Il<yp = ZkN:()(go, er)ex. Since the projection commutes with the operator, the proof is
complete if we can show that there exists an N(e) such that:

H 1@ Jo MMy — ¢) ds

Here we use . to bound for general 1 € L?:

“E L1 sy -(3-9)
< s SHl w
H Nt(E)/o (3) ez lle-g ds

Sl/ot(E) (s)—(é %)Heﬂ-{w” 4

t(e) 2

1

t(e)
- -+3+5 4 <t —143=
R e S 40 e

where we additionally applied Besov embeddings. Choosing N (¢) such that ||[Il<y¢ — ¢|lz2 S

~

SH’L/J ds

cs

S

t(s)l_%%, the proof is complete. O
Now we pass to the main result of this section.

Proof of Theorem[I.23. As in the previous proof, we fix w € Q, the latter satisfying Assump-
tion [6.3] but to lighten the notation we avoid writing explicitly the dependence on w in what
follows. We restrict our attention to dimension d = 2. In dimension d = 1 the proof is similar,
but simpler. For A € R define

Ha,/\: L? — L2a Ha,Aw = (-As + (gs_cs)ng - /\)@ZJ

Let us assume that there exists a A > 0 such that for all A > X and ¢ € (0,1/2) the operator
He» is invertible and

(34) tim [ H3 — (H = 0) | p(zez2) = 0

where B(X,Y) is the space of bounded linear operators between two Banach spaces X,Y with
the standard operator norm. By the continuity of the spectrum, see |33, Chapter 4, Theorem
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3.16], and , it follows that for any k& € N there exists a €9(k) and eigenvalues and associated
an associated eigenfunction (A, e%) € R x L? such that

lim ;. = A lime§ =e, in L2
e—0 k k> e—0 k k

Hence, to conclude the proof we have to prove as well as the convergence of the eigenfunctions
in C!=* (the previous argument guarantees convergence only in L?). The strategy of the proof
is a perturbation of the proof in [2] and is based on a fixed point argument. In Step 1 we solve
the resolvent equation through such fixed point argument, uniformly over € and A large enough.
The precise estimates for this fixed point are discussed in Step 2 and the convergence to the
continuous Anderson Hamiltonian is established in Step 3. In the fourth step we show that
Il.ef — e € C'=*. Throughout the proof the parameter x > 0 will be chosen small enough, so
that all computations hold.

Step 1. Fix p € [1,00] as well as ¢ € C;1+2"‘. In dimension d = 1, solving the resolvent
equation H. \1) = ¢ is equivalent to solving the fixed point problem

(35) =My r(¥) = (—Ac + N) 7 (Ee—ce) T2 — ¢].

In dimension d = 2 we will not prove directly that M, ) is a contraction (while in d = 1 this
is the case: the arguments that follow are not required and Proposition [5.6| allows to find a fixed

3_
point ¢ € Cp K). To find the fixed point we look for a paracontrolled solution. Consider a space
D. C LP(T¢) x LP(T?) which, for a pair (¢, ") is characterized by the norm

180 . = ey + [Pty + &2 Q142
A function ¢ is associated to a pair (¢/,4%) by
Y= ©[(—A: +N)71E] + 9t

With an abuse of notation, we identify the pair (¢, %) with the function ¢ and write ||1)||p, =
(¢, 4*)||p.. Define a map (note the presence of ¢') M »: D — LP as

M) = (= A + N)THEI2) — et — ],
The map M% A can be extended to a map from D, into itself by
M) = (M (W), ME,\(8)) = (124, Moa(e) - (I29) © [(~A: + N)T'E)) € De,
The fixed point of M, solves as well, since the fixed point satisfies
Y =112y,
Step 2. In the course of the proof we repeatedly make use of the elliptic Schauder estimates

of Proposition and the paraproduct estimates of Lemma without stating them explicitly
every time. The aim is to control

MA@, = T2l g1 + [Pe ME L (@) [lgren + 72 Qe MY\ ()| 12x

Via Lemma [B.6l
”nguc;*“ 5 HH? [W © Xs,)\] Hc},**ﬂ + HP‘ed}ﬁHc}ﬁ“ + 572+KHQ6¢ﬁHc;1+2“

(36) 5 Ai% ||1//H(j;*"(||PEX€,A||CI—% + 572” Q5X57)\||C_1_% )
+ [[Pet¥llgan + e[ Q|12
To tackle the norms M ﬂ, first rewrite as
M) = (—Ac + A)‘l{ — o+ [ O +{E 0 M2 © X.0)] — et}

¢ O T2 + CoA(I12,60)
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where C&A(ng/}, &) is the commutator
Cea(llZy), &) = (—A: + N7 (I2y) © &] — [(I2) © (—A: + X) 71 (&)

Combining the Schauder estimates with the smoothing properties of II. and the paraproduct
estimates one finds that

NS (IPMEW) logn + &2 QAW 1+2¢) S el 1o + 26 g e I ma s
+ 16 © M2 © X)) = et 1v2n + [1Cen (9, &) o 12n-
To treat [|&: © II2(¢)' © X:\) — cet)] Hcp—l-&-Zn, we introduce (cf. the commutators
Cl(f,9)=T2(feg)—folllg,  COf,g.h)=f0(g@h)—g(fOh).
By Lemma [B17]
lée © G2, Xep) lvvae < [I€e © 2N, Xep) ey
S llEellg-1-5 IPCE (¢, Xe g + I€elle-14x 1 QeCE (¥, Xl -5
P
< 1 ey~ EE, .
We deduce that
€ © [ © (M2Xe0)] = e[l vvan SO (&, ¥, Xe)llg 12
+ M’l(gs © HEXE,/\ - Cs)”c;l“'@-

By Lemma [B.10]
OO (et Xen)llgovae < OO (st Xl

S €l g5 19 e T2 X

2
oo S 100 e NN

Similarly
9/(€ O TEX. x — co)lgtson S I aa—ell€s O TEXe x — cellemsan < [0/ ere €. .
The estimate for C;, ,\(ng, &) follows from Lemma by noticing that
”Ce,k(ﬂg@b?fa)”cgl““ < HPaC:-:,A(H3¢=§6)||c;1+2“ + |’QaC€,A(H§¢a§a)||c;1+2“

S 2 [ler-rllello-1-5 + 220 1 x 1€ llc-142n S W lIDLNECN

Step 3. Estimates from Step 2 combined with linearity guarantee that that for n € N;n > 2
there exists a C' > 0 such that

IMe(@)llp, < C[lplgspiae + 191, (1 + 101 )°]
1Mo () ~ Mo ()] o, < C A e = ko (1 + JIEIIL,)°)

Note that we require n > 2, since in 1) we do not have a small factor in front of the rest term
with 9%, In particular, there exists a A(sup,[[|£.]||. ) such that for A > X the map M., admits a

unique fixed point, which we denote by Hg_/l\np Moreover, by the Banach fixed point theorem

HH;}\SOHDS < HM?O(O)HDS S H‘PHCZ;”%(l + (1€l 57,{)27

implying that 7-[5_;\ € B(C, 1+2x D), with the norm bounded uniformly in e. Similar, but less

involved calculations lead to a construction of the resolvent 7—[;1 = (H — A)~! in the continuum
for A > X. This is a bounded operator ’H;\l € B(C;H%,Do), where the latter is the Banach
space defined by the norm (for 1) = ¢/ @ (—A + \)71¢ + ¢f):

Ty e
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By linearity and computations on the line of to those in Step 2:

A |Przier - o670y

crtr

(37) lim  sup H (’H;/l\go)/ — (Hy'p)

1—
0Nl 1420 <1 Cp

To show it would be sufficient to show (in the particular case p = 2) that D, < LP, in the
sense that [[¢)[|z» < [|¢]|p.. Unfortunately, this is not the case, because Qcp* € C, ' 2¢. So we

need a better control on the regularity of ¥f, which we will obtain by using that ¢ € LP, namely:
N QM (W) v S 1T — et — llzo + [(T20) © X allzo }
and since ¢; < log% (see Proposition
€12y — cot)’ — ¢l e S N1€elle-roan T2l gr—n + e [[¢ |0 + [l 2o
Similarly, since

If ©glizr < fgllr +llg © fllze + [If © gllize S NI flleg llgll o

one has
1(I2¢) © Xeallze S M2 1 [ Xealloe
Therefore the L> bound on Q. X, ) leads to
(38) N2 e QME (W)l S llelee + 19 llo. (1 + (1€ .)-
In particular, the regularity of the resolvent map ’H;}\ is enhanced by
e Q- (M) e S lleoll o
This leads to the embedding D, < LP which justifies
1My = Hytolle < (Hoye) © Xep — (Hy'9) © (A +2) ¢l
+ I P(H30)" = (Hy ) lle + 1| Qe (H 3 0)F |-

Letting p = 2 and sending € to 0 together with and proves .
Step 5. It remains to show that

I.e5 — e, in CI77

Since the embedding C;y C Cgl is compact for a > o', and since k can be chosen in arbitrary

way, and we already established the convergence of ef in L? and hence also in the sense of
distributions, it is sufficient to show that

sup || Izef||er-» < o0.
)

Due to the normalization we also already have a uniform bound in L?:

sup || zeg |2 < 1.
3

Now, choose A > A (and hence A\ > sup, A7), then one can rewrite:
ef = (A, — /\)”H;}\ei.
So that
¢ = () © X + (),
and by all the bounds in the proof of the previous step:

sup { €I, + 24| Q(ef )12 | < oo,
g
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where we use the space D, in the case p = 2. Hence, applying Lemma one obtains:
M ller—n S N[ (eR) © Xealler—r + IP(€f) llea—n + e~ Qe(ef)F 2

S e R Nerr 1 Xenllo-5 + llekllp. +e7H1Qe(eR) 2 < llekllp. (1 + €. -

Using the bounds on the noise terms, as well as the uniform bound we already established one
thus has, by Besov embedding

—K ~Y

sup HHEeiHC% < sup HHEeiHC;w < 0.
3 &€

Iterating the entire procedure again in L instead of L?, one obtains the required uniform bound
in C1*%. O

Before concluding, we provide the proof of the stochastic bounds we stated at the beginning
of the section.

Proof of Proposition [6.3. We will prove in order the bounds for &, X,  and & ¢ HE:X& A Even-
tually we address the convergence. Although only in the first case the dimension is allowed to
be both d = 1 and d = 2, we will keep d as a parameter throughout the proof, for the sake of
clarity.

Step 1. First, observe that by Assumption [2.1

go(a)] < 272,
This explains both the L bounds on & and the bound in C™2 (i.e. for ¢ = 1). If we show that;

sup  E[[l&|

] < 00,
€€(0,1/2)

_d_k
cC 272

the bound for arbitrary ¢ follows by interpolation, since by interpolation, from the definition of
Besov spaces, for any ¢ € [0,1] and «, 5 € R:

1—
lellgeara-on < lolgalieles:
Hence let us consider the case ( = 0. By Besov embedding, the required inequality follows if one
can show that for any p € [2, 00):

sup EJ&|” , , <o0.

€€(0,1/2) By

Here in view of Assumption and by the discrete Burkholder-Davis-Gundy inequality as well
as Jensen’s inequality one finds that:

p/2
[ s tsp@ians [ (Zedmmﬁ(m)) da
Td Td

zELG

[S1sH

B

p/2 ,
< [ ([, g meear) ar s Il s 2%,
T4 Td

which is a bound of the required order.
As for X, y, by the elliptic Schauder estimates of Proposition

e HPEX&)\ |’C7(1—C)+27% + g2 [ QEX&)\

so that the required bound follows from the previous calculation. In addition, we need to bound
8_IHQerg,>\||Loo. Here:

19 Xe all oo vy = I Fzd (A=) (=0 + X) ™" ()& ()]l oo 19y
(39) < NFR A=) (=0 + X7 Ol pay el oo ()
S ENFRa [A=T(E) (=X + 1+ X))l o1 may el oo ()

|c*(1*C)*% 5 EC ”58 ”Cf(lfC)*% )
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where we applied the Poisson summation formula of Lemma Notice that

1Faa (A=) (=X + L+ 20) 7 )]l 1 oy

’ [1_;(26)\) (=) [—22 +11 +e2x 1 +152A](E')] L1 (k)
’ [11433)] L1(RY) + Hfﬂgdl [(1_7)(5’) [—;22 +11 +e2) 1 +152)\} (5‘)} L1 ()

The first summand is bounded in L'(R?) uniformly over & (with some abuse of notation for the
Dirac ¢ function). As for the second observe that, for some ¢ > 0:

—1 1 1
’ T [(1_1)(8‘) L)?Z +1+e2X 1+ 62>\} (8.)} L*(R%)
2mu{xk) (1 1 — 1
/Rde (1 1(k))[—>?2(k)+1+e2>\ 1+e2/\}dk'

N 1 1
[D ( (k) + 1+ e2) 1+52)\>}1{|’“|>C}

where with the sum we indicate all partial derivatives up to order 2d. Now this term can be
bounded by Lemma Let us show this for & = 0 (the other cases are similar), where by a

Taylor expansion:
/ — 1 dk < Ly / (k)1 dk
ri | —x2(k) + 14+ e2x  14+e2n| ke L2 ) Joa X VB2

1

< | —— —dk < .

N/Rd TN

Combining the last two observations with leads to

< sup (1 + [z2) T
rcRd

S 2k

o<\a|<2d

dk,

1 1

_d
”QsXa,AHLoo(Td) < 52||§s||Loo(1rd) Serz,

which is of the required order.
Step 2. We now consider the bound on & © HEXE, ». In this computation it is important to

note that d = 2. Define g (k1, ko) and & (k) as
Yok, ka) =Y i(k1)oj(ka),  &(k) := Fra&e(k).

li—jl<1
Then

E[Ea(h)@(b)] = /(TQ)2 6727“(161-z1+k2-12)xQE(xl)(1;2) dzq dxs

:/TQ e~ 2mlkitke) e 95 (eky) dary = XQ (k1)1 410} -

Hence to compute the renormalization constant observe that

: X2 (ck
cex =Bl OTIZX, \(z)] = /( 2) PR Ty (ky, kp) z;( £
z

—Je(k2) + A
_ [ X(h)Ra(ek)
—/ZQ_MM A

A similar calculation shows that actually c¢. = E[&X&,\] and the asymptotic ¢, ~ log(1/e)
follows from a manipulation of the sum. We turn our attention to a bound for ||& OHEXE,AHcfg.

E[&(k1)&: (k)] dhy ks
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As before, for p > 2, consider

Elé © Xep—celpy = ;1 2P| A (6 © Xep—celim-1)[ gy
-

- Z 2% /w E[A;(& © Xea—celj=—1)[P(z) dz.

j>—1

(40)

It is now convenient to introduce the notation:
e -1 X(e)
Kiuta) = 72 (an) - 0 ) @)
Then the integrand in can be written as
E[|Aj(& 0 I2X 0)(2) — celgj=—1y 7]
= E[|4;(& O IEZX ) () — EAj(& 0 TIZX ) (2) ]
Ko=) X ([ K= 0= e 0l s d ) ay

jl—m|<1

(41)

P
=K

)

’]1‘2

where, conveniently:

&e(21) 0 &(22) = &o(21)&:(22) — E[&(21)€:(22)]
Now we can write as a discrete stochastic integral and apply Lemma to obtain

K= D0 ) ( / Kl(y—Zl)’Cm(y—Zz)dzld@)fa(xl)Ofa(xz)dy

\l—m|§1x1,az2€ZgﬁT2 Qs(xl)XQs(l’Q)

Ki(z—y) > ( ][ Ki(y — 1)K, (y — 22)dz1dz2>dyﬂ "

=mI<1 70, (21) % Qe (w2)

P
E

S Z €2d

- 21,22€7Z2NT2
f Kiw—y) Y Ky — 2Ky — ) dydz dz

[ x
T2

_I17I2EZEQT2 QE(TEl)XQE($2) |l7m|§1

TQ

2:| p/2

<[/
L J(T2)2

where the last step is an application of Jensen’s inequality. Now, via Parseval’s Theorem, the
latter is bounded by

2

Kix—y) Y Kl(y—21)K5,(y—2)dy
jl—m|<1

p/2
le dZ2:| s

’]1‘2

[/ Ki(x—y) Y ™Yo (ky)e’™ Y o, (k )7’?(51@) d 2dk dkzr/z
@2 | Jre J Y o Q1\k1 Om (K2 "9 (k2) + A Y 1 dr2
~9 k) 2 p/2
= )2 (k4 R, ba) o 2) ‘ dk dk} :
[/(22)2 e 0 (k1 + k2)vpo (K1, 2)—195(k2)+/\ 1 dks
Now by Lemma [5.1}
o2 o2 -3
X" (k) X" (k) I 1
0. 0R) + A~ R g A Lese T Hkzey S e
Finally, taking into account the supports of the functions,
12 p/2 . 1p/2
(k1 + ko)bo (k1 ke) ———— | dki dk < (27240741 <1
[/(W 03k + o)l o) | by 2] < [2%274] " <,

which provides a bound of the required order. With this we have concluded the proof of the
regularity bound. We are left with a discussion of the convergence.
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Step 3. What we established so far implies tightness of the following sequences of random
variables in their respective spaces:

geC it P.X.,eClh £ oT2X, )\ €C".

The next step is to show that the limiting points of & and £.0I12X, ¢\ are unique in distribution. In
particular, in view of Proposition this would imply weak convergence also of P X, y. Once
we have proven weak convergence the required result concerning the almost sure convergence
follows by Skorohod representation.

Convergence of & to space time white noise £ is an instance of central limit theorem (notice
the normalization of variance in Assumption . We therefore focus our attention on the more
involved Wick product & ¢ X, x. For fixed ¢ € S(T?)

<907 é.a o Xs,)\>

_ /Tz o(y) Z Z ( / Ki(y — 1)K, (y—22) dz1 dZ2> §e(w1) 0 &e(22) dy

[l—m|<1 z1,x2€Z2NT?2 Qe(z1) %X Qe(z2)

= > (el D TLE(- — 2K, (~—22))ée (1) © & (2).

x1,82E€L2 [l-m|<1
Consider a map L. : (ZE)Q — R defined by
LE($1,.T2) = (90(')7 Z HéQKl( - ml)HsQ,Cm('_xQ»1{(x1,x2)€T2XT2}'
ll—m|<1
This definition naturally extends to e = 0, where L maps (R?)? to R. Our goal is to show that
(42) o Le(wn,ma)(m) o &e(w) — L(z1, z2)€(dw1) o €(da2),
(e1,02)€(22)? (B

where convergence holds in distribution and the limit is interpreted as an iterated stochastic
integral in the second Wiener-Ito chaos. It is sufficient to verify the assumptions of Lemma[C.2]
That is, we have to show that there exists a g € L?((R?)?) such that:

sup ‘1(5—111'2)2]:(22)2LE| < g, lim ||1(s_1'ﬂ'2)2]:(522)2L5 - ]:(R2)2LHL2((R2)2) =0
€€(0,1/2) N e—0

For this purpose we calculate

1(671T2)2f(EZ2)2L5(k17 k)

= 1(5—1T2)2 (k‘l, kig) / 62m(k1'$1+k2'$2)<tp('), Z H?Kl( - :El)HEQICm(—.TQ» d:El dl’g

(220T2)2 [l—m|<1
= 1(5*111‘2)2 (k1, k2) / eQm(kl-x1+k2-x2)<(p(.)7 Z Ki(- — 21)Kpn(-—12)) dzy dag
(T2)? [l—m|<1
= Le-rp2p2 (Fu, kz)/ p(y)e?mbrthaly N Qz(—kl)gm(—kz)m dy
B l—ml<1 —Ue(—k2) + A
2
= _ X(eks)
= 1(c1p2y2(k1, k2) (Fra0) (k1 + ko) “;Kl 01(k1) om (k2) (k) + N

so that the required assumptions are naturally satisfied. Since ¢ is smooth, the latter term is
bounded in L?, uniformly over e. In particular follows. Hence the distribution of any limit
point of (p, & oT12X, ¢,\) is uniquely characterized and since ¢ is arbitrary this implies convergence
in distribution of & ¢ Hng,A. O
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APPENDIX A. THE SLFV IN A RANDOM ENVIRONMENT

In this section we provide a rigorous construction of the spatial A-Fleming-Viot process (SLFV)
in a random environment. We work under the following assumptions.

Assumption A.1. Let (Q,F,P) be a probability space. Fize € (0,1/2) and u € (0,1),d = 1,2
and w®: T¢ — [0,1] a measurable map and let s.: Q x T4 — (—1,1) be a measurable function.
The natural state space of the spatial SLF'V process is:
M = {w: T? = [0,1], w measurable},
which is a metric space when endowed with the distance dp/(u, w) = sup,era |u(z) —w(z)|. Then
under the assumption above, for € T¢ p € {a,A} and any function w : T¢ — [0, 1] define the
operator ©%: M — M by
Ohw(y) = w(y)l{pe(a)} W)+ Wl gy +(1—ww(y)) LB (2)} (V)
= w(y)+u(Lp—a—w(y)) B, ()} (¥)-

In the discussion below, let B(E) be the Borel sigma-algebra associated to some metric space E.
We say that a probability measure P“ on (£, B(E)) indexed by w € €2 is a Markov kernel, if for
any A € B(E) the map w — P“(A) is measurable. Then one can build the semidirect product

measure P x P¥ on Q x E (with the product sigma-algebra), characterized, for A € F, B € B(E),
by:
P x P“(A x B) = / P(B)P( dw).
In the definition below we write: !
s+ (x) = max{s(z),0}, s_(x) = max{—s(z),0}.
Lemma A.2. Under Assumption[Ad] fir w € Q. There exists a unique Markov jump process
t > w(t) in D([0,00); M) started in w(0) = w, associated to the generator
L(e, se(w),u): Cp(M;R) — Cp(M;R),
defined by
L) = [ (F) = f)atw. dw'), ] € COLR),
where the transition function p: M x B(M) — R (depending on s.(w),u,e) is defined by:
pw(w, dw') =0 unless there exist = € T p € {a,A} such that w' = O w.

And if w' = Ohw for some x € T p € {a,A}:

pl(w, duw) :{(1—|55(w, ) ) [y + (1 TLew) gy 2)
+ (8¢)—(w, ) [(ng)Ql{p:a}—F(l—(Haw)Q)l{p:m}] ()

+ (82)+(w,x) {Haw(Q—HEw)1{p:a}+(1—H5w)21{p:m}} (a:)} dz.

The law P¥ of w in D([0,00); M) is a Markov kernel and induces the semidirect product measure
P x P¥ on Q x D([0,00); M).

Proof. Note that p defined as above is a Markov kernel on M x B(M) (to be precise, here we have
to observe that for fixed w the set {O5w, = € T¢ p € {a,A}} is closed and hence measurable
in M). Hence, the Markov process is constructed following [23, Section 4.2]. In addition, for
f € Cy(M;R) measurable and bounded the map w — [}, f(w)po(w, dw') is measurable (we
made explicit the dependence of p on w). This implies, e.g. by [23, Equation 4.2.8], that the
map w — P¥(A) is measurable, for A € B(D([0,00); M)). So the proof is complete. O
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Lemma A.3. Under Assumption fir w € Q and let w be the Markov process as in the
previous result. For any ¢ € LY(T?) the process t — (w(t), @) satisfies the martingale problem of
Lemma[L3.

Proof. In the discussion below we omit the dependence of s.(w) on € and w, since such dependence
is not relevant here. We will apply the generator to functions of the form F,(w) = F({w, ¢)),
with ' € C(R;R),¢ € L'(T%). For simplicity we divide the operator £ = L(e, s,u) in three
parts:

L(Fp)(w) := L2(Fy)(w) + L(Fy) (w)
= LUN(Fp) (w) + LL(Fp) (w) + LX(Fy) (w)

(the first is the neutral part, the second two are the selective parts of the operator), where

£ w) = [ (1= Js(0)]) [Tl Fo(O%0)~Fy(w) [+ (1-TLew) [Fo(O3u) - Fy(w)] (a) do

'[[*d

LENFy) (w) = / s () [(ngf[F¢<@;w>—F¢<w>1+(1—(st)Q) [F¢<@i‘w>—F¢<w>]] (z) da
Td

£ F)w) = [ 520 [Haw@—naw)m(@;w)—F¢<w>]+<1—naw>2[F@<e§‘w>—F@<w>@ () dz
Td

Now, in the special case of F' = Id, the neutral part of the generator takes form
£71d,) ) = e | (1-]s(0) D(Iw) (L) — T (i) )
Analogously, the selective part can be written as
£59(1d,) (w) = ue? /[[‘d s(x) [Ha(wgo)—(ﬂaw)Qﬂggo](x) + 254 (o) [Hewll p—1I (wy)](x) dz.
Adding those two we conclude that

E(Idtp)(w) = ugd /Td[(st)(HeSO) - Hs(wW)](x) + S(x)[(st)(He(P) - (Hew)2Hs(P] (.CC) dz.

This justifies the drift in the required decomposition. To obtain the predictable quadratic vari-
ation of the martingale make use of Dynkin’s formula, that is

(M=(p))e = /0 L£(1d%) — 2(Id,£(1d,)) (X7) dr.

Once again, it is natural to treat the terms involving £*" and £ separately. For the neutral
term:

(LM (1d2) — 2F, L7 (1d,,) ) (w)
— 22 / (1—|s(z)]) [ng(Hgap—Ha(wap))2 + (1-Tow) (Hg(wgo))Z] (z) da,
Td
which can be written as
et [ (1 fs@)) [ [(1Lg)? - 2MLep@)IL(wp)] + [ (wp)]*] @) da.
']I‘d

Analogous calculations for £ lead to

(£ (102) — 21, £2'1d,) (w) =

=2 [ o (@)L () = 2T (wp)] + [T ()] ] 0) o



44 ALEKSANDER KLIMEK AND TOMMASO CORNELIS ROSATI

Whereas for E;el they lead to
(££1(1d3) — 21, L31d,) (w)

= 2 /er sy (x) [(Hew)(2—H5w) (I.p— (Hg(wcp))2 + (1—H5w)2 (ng)Q] (z)dx

2 2
=2t [ sy @) (M) 2-Tew) [ (M) =20 (00)) + [ 9) ) (0)]
Summing neutral and selective terms one obtains

w22, (1-s]) [ (M) —20L 1L (i) )+ (T (), (1-s]))
+ u52d<(st)2a S— [(H630)2 —2(Iep) (Hs(wgp))} + <(H€(w90))27 )

e [, 5. (2-Tow) ( (ILep)?—2(1ep) (I (wp)) ) )+ (I (wp)) , 5.,

which can be written in the form from the statement of the Lemma.

APPENDIX B. SOME ANALYTIC RESULTS

In this appendix we recall some of the analytic theory we require. First we concentrate on
special properties of Besov spaces and the regularity of characteristic functions. Later we will
address some relevant points in paracontrolled calculus.

B.1. Besov spaces & characteristic functions. Let us begin by stating the Poisson summa-
tion formula (a proof is left to the reader, or can be found in many textbooks and web pages).

Lemma B.1. For ¢ € S(RY) it holds that:

Friol@) = Faiela+2).
z€Z4

In particular, this implies for ¢ € S(R?) the bound:
|1 Frd ellpreray < 1 Fa oll 2 (ra):

Recall that the Besov spaces By’ q(Td) are defined via a dyadic partition of the unity {o;};>-1
such that for j > 0, gj = o(27+) for a smooth function ¢ with compact support in an annulus.

Proposition B.2 (Besov embeddings). For any 1 < p; < py < oo and 1 < ¢ < g2 < o0 the

space By, . is continuously embedded in Bg;;i(l/prl/m). In other words, there exists a constant

C > 0 such that:
lell wacr 2 < Clellsg, ,
BPZ ‘Z2

In addition, for o/ < o the embedding By, 4 € Bp1 q IS compact.

In certain cases, it will be convenient to use the following alternative characterization of certain
Besov spaces.

Proposition B.3 (Sobolev-Slobodeckij norm). For every a € Ry \ N and for every p € [1,00)
define the the Sobolev-Slobodeckij norm for ¢ € S'(T9) as:

_ [D™p(x) = D™ o(y) P i
lelhwg =il + 30 ([ PRADZ DA dray) e ool

d wTd

Im|=la]
There exist constants a pair of constants c(p), C(p) > 0 such that for ¢ € S'(T%)
cllelsg, < llellwe < Clielsg, -

p,p T
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For a proof consult e.g. [51] Theorem 2.5.7 and the discussion in Section 2.2.2. The next
result states the regularizing properties of convolutions.

Lemma B.4. Forp,q,r € [1,00] satisfying % = %4—%—1 and for any o, € S'(T?):.
lp* ¥l gors S M1 fllcg llgllce-

Proof. By Young convolution inequality

(43) 1Ai(f * 9)lzr = [Aif * Aigller S NAifllze|Aigll e,

where A; is associated with a dyadic partition of the unity different from the one we use for
most of the proofs. Namely we require that it satisfies {9;};>_1 such that p;0; = 0j. Then the
bound follows immediately, since the Besov norms associated to different dyadic partitions are
equivalent (cf. [3, Remark 2.17]). O

The following lemma is a special case of results obtained by [47]. The proof is included for
completeness.

Lemma B.5. Fiz ¢ € [0, ;1)) Then, forp € [1,00):

d—4
sup < el < oc.

€€(0,1/2)

Proof. We shall make use of the characterization of fractional Sobolev space in terms of Sobolev-
Slobodeckij norm. A direct computation shows that

) 1P\
R P e

_ap1B. (@) = 15 (y)]P e
<1 dp‘ Bs € .
+< / E/W\Bs oyt

Now let d.(x) be the Euclidean distance of  from the boundary dB; and let Bg_(,)(y) be the
ball of radius d.(x) about y. Then the previous integral can be estimated by:

1 1 p 1/p 1 1/p
</ / —dp ‘ Bs ) d_fg( )‘ dxdy) < ( / / E—dp e dxdy)
e Td\Bs ‘.’I} y‘ P € Td\EdE(y) (y) ’.fI/' B y| b
(/ / 1 1/p J ’ 1/p
— g dxdy) < </ e Pd(y)” pdy>
- JTI\B,_(,)(0) ||dt+ep 2 :

“ 4 d—1 z d +a\ /P d—C+d/
< / "W (ce —r)~Prdldr ) <e (5—@ ) < gmd=CHd/p
0

Corollary B.6. For ( €[0,1),p € [1,00] and o € R

sup ||xe * @l gasc S lplleg.
€€(0,1/2) P

Proof. This is now a direct consequence of Lemmata and (the latter with p = 1). (I
The rest of this subsection is devoted to the proof of Lemma

Proof of Lemma[5.1] Let us start with the term involving the gradient. We have that for i =
1,....d:

(DR):(0) = ~2m |

zye2melk) dm‘ =0.
B1(0)

k=0
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For the term involving the Hessian, we observe that an analogous computation for ¢ # j shows
that (D?Y);;(0) =0 . If i = j we find that

(D*X)1.4(0) = —(2m)* ][ da 22e~2mke)
B1(0)

—: —(27)?
0 (27) "o,

with the value of vy as in the statement. The two-sided inequality follows by a Taylor approxi-
mation. We are left with a bound on the decay of x:

dTI,
‘ d.%'il e dl‘in
For this purpose let J,(:) be the Bessel function of the first kind with parameter v, that is

$B(k)| Sa (1+K) 5"

RS N e
Jl/(k) _mz::Om!I‘(m—l—V‘Fl) <2> ‘

The Fourier transform of x¢ is given, for some ¢, C' > 0, by

(44) xB(k) = C(d)/o dt sin (t)e?TIK SO = Clk| =275 (x| k| /2)

Since Ji(k) = 1/% sink, the bound for d = 1 is immediate. For d = 2, we make use of an
2
asymptotic bound for Bessel functions:

sup 0~ /2|1, (0)| < +oc.
0>1

We provide a proof of this bound in the next Lemma. The bound for the derivatives then follows
from , the asymptotic result for Bessel functions, and the following pair of identities

Dudn(z) = %(Jn_l(x)—i—JnJrl(x)), Wn € Z,
Jon(:)=(=1)"Ju(-)  VneN.
|

The following result is well-known (see e.g. [53], where many deeper results are presented).
For completeness we provide a proof that satisfies all our purposes.

Lemma B.7. Fix v € R. Then

sup 0~ /2| J,(0)| < +o0,
o>1

Proof. Through and by changing variables x = cos(t) we rewrite the Bessel function as

1 1
/ dz (1—1‘2)%6%)‘% = 2Re</ dz (1—.1,‘2)d216wx>.
-1 0

A change variables x = 1—u?. yields
ol d-1 o rve 2 d1
e’Q/ du (u?(2—u?)) 2 ety = edH/ dw (w2(2—w—)) 7 ey
0 02 JO 0

Observe that in order to obtain the desired bound it is now sufficient to show that the integral
terms is bounded uniformly in p. After another change of variable w = e™*4 2z we obtain

e%\/@ d—1
/ dz (*LZ2(2+L22/Q))T€_Z2,Z
0

d—1 d—1

\/E a—= 2 71'/4 a—= 2up
:/ dz (—e2%(2+12%/0)) 2 e7* z—i—/ dp (—10e*?(2+1e*¥)) 7 e "7 ge??
0 0
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The first integral can be trivially bounded uniformly over p while the second one is tends to 0
as p tends to infinity since the exponential term dominates all the others. O

B.2. Paraproducts & commutator estimates. This section is devoted to products of distri-
butions and commutator estimates, starting with the decomposition in paraproducts (through
the symbol ©) and resonant products (®). For ¢, € &'(T?) set

i1
Sip = Z Ajop, Y = Z Sic19A, pOY = Z A,

j=—1 i>—1 li—j]<1

where the latter sum might not be well defined. Then, an a priori ill-posed product of ¢ and 1
can be written as

P Y =90pQY+pOY+pO.

The following estimates are classical, see e.g. [3, Lemmata 2.82 and 2.85] and guarantee that the
product is actually well-defined if the regularities o and 3 of ¢ and 1 satisfy a + g > 0.

Lemma B.8. Let o, 8 € R and fir p,q,7 € [1,00] such that 1/r = 1/p+1/q. For ¢,v € S'(T%)

le©dlice < llelizelldllcg,
lp©Yligors S lellcsllieg, i £ <0,
lp © Yllgars S llellegllvllcg o atpB > 0.
The rest of this subsection is deals with the following commutators.
Definition B.9. For distributions ,, o € S'(T?) we define the (a-priori ill-posed) commutators
COp,1,0) =00 (VO 07) —1(p o),
Cll(p,v) = 1E(p @ ¢¥) — p © 129,
Celp ) = (A + V)00 1Y) — 0O (—A: + 1)
The first commutator estimate is crucial, but by now well-known.

Lemma B.10 ([27], Lemma 14). For ¢,7,0 € S'(T%), o, 3,7 € R with a + B+~ > 0 and
p € [1,00]:

IC® (e, ¥, 0)llga+s S lielleall¥llcsliolier
We pass to the second estimate. Recall the operators P., Q. as in Definition [5.3

Lemma B.11. For ¢,¢ € S'(T%) and o € R, 3 > 0,p € [1,00] it holds for every § € [0, A1):
IPCZ (@, )l egrs S Nelleslltlles,  1Q:CE (e, ¥)leg S €¥llells v llcs-

Proof. Note that for any 4 > 0 there exists an annulus A (that is a set of the form {k € R? | r <
|k| < R} for some 0 < r < R) such that the Fourier transform of

I2[S;_100:0) — Si—1pII2 A
is contained in 2! A. Tt is therefore sufficient to show that

(45) |2[Si—10A)] — Sic1eIZAiep||, S €6H<PHcg A Lo,

since this implies the required bound by estimating €% < 279 for 7 such that P.A; # 0. To obtain
(45)), recall the Sobolev-Slobodeckij characterization of fractional spaces of Proposition SO
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that for § € [0, 1)

» 1/p
L seaet-sipiammaf )
B:(z)
][ [Si—1¢(y)—Si—190(2)]
@)

ly — x|

IT2[Si_10A0] — Sim1 T2 A ] o < ( /T d

< gd /

|Si—10(y)—Si—19(x)[” e K -
S dyd Al S 10ll5 2% 1) o
c </Ed/5(:v) ly — 2[dTop ydz | [[Aidlleo S e°lSim1elles 2™ [4lle

where the first inequality follows by Jensen’s inequality and and we have used the embedding
Bg,oo - Bl‘ip. Now the result follows since:

p 1/p
Al az)

15i-16les < el
This concludes the proof. [l
Lemma B.12. For ¢, € 8'(T9) and a € (0,2),5 € R and p € [1, 0]
IPCorlp.)legea +221Q:Cen(0.) s < Nl bl
Proof. By the elliptic Schauder estimates in Proposition [5.6] it is sufficient to prove that
I(=Ac + N Cex(e; P)lcs S llleglllles-

In turn to obtain this bound, since the quantities below are supported in an annulus 2°A4, it
suffices to estimate for ¢ > 0

(46) 1Si—198it) = (—Ae + N [Si—19(=A: + N A e S 277 Slleg |9 les-
Let B:(p, 1) be defined as

Bei@ = f a4z e o))
e(T e\Y
Then A, can be decomposed as
A(p - ¥) = A(0) - Y+ - A(¥)+Be (0, ),
Hence proving Equation reduces to finding a bound for
I(= Az + N [Si—19](—As + ) 7AW Lo + | B(Sic10, (A + X)THAw) | o

Starting with the first term, one has:

I(=As + N)[Si—19)(—=As + )T AW [ze S 1(=Ae + N [Si—1] [z [[(—As + 2) 7 AW 1.

If 27¢ > ¢, since @ < 2, one can estimate via Proposition [5 .

[(=Ae + N)[Si-1¢]l|1r < Z I(=As += M[Ajelllr S Z 2 Delieg <2Vl
j=-1 j=-1

If 27% < ¢ choose i(e) such that 27%%) ~ ¢ (uniformly over ¢). Then following the previous
calculations and using that o > 0:

i(e)—1 i—1
I(—Ac + N[Sic1@lllr < D> I(=Ac + VA9l + D (= Ac + N[Aj0]] v
j=-1 j=i(e)
S g_(Q_a)WPHcg-

By Proposition moreover
||(_A€ + )‘)_IA”Z)H 5 (2_2i1{2*i26} + 521{2*i§a})2_6i“¢‘|cﬁv
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which provides a bound of the required order for . Finally, we have to bound the term
containing B.. If 27" > ¢

IVSi—1ll e V(= A + N7 Al oo S 2°1Sic10ll o2 T )l es S 277 [olleg [ ls.
whereas if 27 < e
IB=(Si—10, (—Ac + ) A) || zr S €728l oo ll(—Ae + A) T Ait | oo

S 27l el lles.
This bound is again of the correct order for and hence the proof is concluded.

APPENDIX C. MULTIPLE DISCRETE STOCHASTIC INTEGRALS

This appendix is devoted to results on discrete multiple stochastic integrals. The discussion
is based on approach of [39, Section 5|, which in turn based on [10]. The following lemma (see
also [10, Theorem 2.3|) provides an estimate for the discrete multiple stochastic integrals. The
definition of such integrals, in particular the definition of £(z1) ¢ -+ ¢ (), can be found at the
beginning of Section 5 in [39].

Lemma C.1. [|39], Lemma 5.1] Let & satisfy Assumption . Fizn > 1. For f € L*((z&)")
define the discrete stochastic integral by

Taf =Y e Mf(z1,...,2m)€(21) 0 0 E(zn).
21,00y 2n €ZY

Then forp > 2

1
[E\Jnf\p] " S 2 zaymy-

The next lemma provides a convergence criterion for discrete multiple stochastic integrals
to continuous multiple stochastic integrals. In the following Fza indicates the natural discrete

Fourier transform on ZZ. The definition can be found in the glossary of [39].

Lemma C.2. [|39], Lemma 5.4] Let & satisfy Assumption . Fixn > 1. Fiz a sequence
fe € L2((Z4)™). Assume that there exists a function g € L?((RY)") such that

sup ‘1(8—1Td)nf(zg)nf5’ S g,
€€(0,1/2)

and there exists an f € L?((R))") such that
glE)I(l) ‘|1(5*1Td)”F(Zg)"f€ - ‘F(]Rd)"fHLQ((RQ)”) == 0

Then, if £(dz1) ¢ ...&(dzg) denotes the Wiener-1té integral against the Gaussian stochastic mea-
sure induced by a white noise & on RE, the following convergence holds in distribution

li oo = [ Flee m)ede) o o)
E— (Rd)n
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